Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{9}{1.2}\)+ \(\dfrac{9}{2.3}\)+\(\dfrac{9}{3.4}\)+......+\(\dfrac{99}{99.100}\)
A = 9( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+.......+\(\dfrac{1}{99.100}\))
A = 9( 1-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+........+\(\dfrac{1}{99}\)-\(\dfrac{1}{100}\))
A = 9 ( 1 - \(\dfrac{1}{100}\))
A = 9 . \(\dfrac{99}{100}\)
A = \(\dfrac{891}{100}\)
\(A=\dfrac{9}{1\cdot2}+\dfrac{9}{2\cdot3}+\dfrac{9}{3\cdot4}+...+\dfrac{9}{98\cdot99}+\dfrac{9}{99\cdot100}\)
\(=9\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\right)\)
\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=9\left(1-\dfrac{1}{100}\right)\)
\(=9\left(\dfrac{100}{100}-\dfrac{1}{100}\right)\)
\(=9\cdot\dfrac{99}{100}\)
\(=\dfrac{891}{100}\)
\(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\dfrac{5.3^{20}.3^{18}-2^2.2^{27}.3^{20}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\dfrac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3-7.2\right)}\)
\(=2\)
\(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}=\dfrac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}=\dfrac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(5.3-7.2\right)}=\dfrac{2^{29}.3^{18}}{2^{28}.3^{18}}=\dfrac{2^{29}}{2^{28}}=2^1=2\)
Sửa đề:\(\dfrac{5\cdot4^{15}\cdot9^9-4\cdot3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}\)
\(=\dfrac{5\cdot2^{30}\cdot3^{18}-3^{20}\cdot2^{29}}{5\cdot2^9\cdot3^{19}\cdot2^{19}-7\cdot2^{29}\cdot3^{18}}\)
\(=\dfrac{3^{18}\cdot2^{29}\cdot\left(5\cdot2-9\right)}{2^{28}\cdot3^{18}\cdot\left(5\cdot3-7\cdot2\right)}=2\)
\(A=\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{7.2^{29}.27^6-5.2^9.6^{19}}\)
\(A=\dfrac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{7.2^{29}.3^{18}-5.2^9.2^{19}.3^{19}}\)
\(A=\dfrac{2^{29}.3^{18}.\left(5.2-3^2\right)}{2^{28}.3^{18}.\left(7.2-5.3\right)}\)
\(A=\dfrac{2.\left(10-9\right)}{14-15}=\dfrac{2}{-1}=-2\)
Chúc bạn học tốt!!!
\(A=\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{7.2^{29}.27^6-5.2^9.6^{19}}=\dfrac{5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^2\right)^9}{7.2^{29}.27^6-5.2^9.\left(2.3\right)^{19}}\)
\(=\dfrac{5.2^{30}.3^{18}-2^2.3^{20}.2^{27}}{7.2^{29}.3^{18}-5.2^9.2^{19}.3^{19}}\)
\(=\dfrac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{28}.3^{18}\left(7.2-5.3\right)}\)
\(=\dfrac{2\left(10-9\right)}{14-15}=\dfrac{2}{-1}=-2\)
1)Tính
a)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{9.10}\)
=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
b)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
2) tìm x
\(a\)) \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}\)\(=\dfrac{9}{5}\)
\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)
\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{7}{5}\)
\(\dfrac{4}{5}x=\dfrac{7}{5}-\dfrac{7}{5}\)
\(\dfrac{4}{5}x=0\)
\(x=0:\dfrac{4}{5}\)
\(x=0\)
b)\(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)
\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)
\(\dfrac{2}{5}x=\dfrac{31}{10}\)
\(x=\dfrac{31}{10}:\dfrac{2}{5}\)
\(x=\dfrac{31}{4}\)
1. Tính:
a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
= \(\dfrac{1}{1}-\dfrac{1}{10}\)
= \(\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
= \(\dfrac{1}{1}-\dfrac{1}{100}\)
= \(\dfrac{100}{100}-\dfrac{1}{100}\)
= \(\dfrac{99}{100}\)
2. Tìm x, biết:
a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)
\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)
\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{7}{5}\)
\(\dfrac{4}{5}x=\dfrac{7}{5}+\dfrac{7}{5}\)
\(\dfrac{4}{5}x=\dfrac{14}{5}\)
\(x=\dfrac{14}{5}:\dfrac{4}{5}\)
\(x=\dfrac{14}{5}.\dfrac{5}{4}\)
\(x=14.\dfrac{1}{4}\)
\(x=\dfrac{14}{4}\)
Vậy \(x=\dfrac{14}{4}\)
b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)
\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)
\(\dfrac{2}{5}x=\dfrac{32}{20}+\dfrac{30}{20}\)
\(\dfrac{2}{5}x=\dfrac{62}{20}\)
\(\dfrac{2}{5}x=\dfrac{31}{10}\)
\(x=\dfrac{31}{10}:\dfrac{2}{5}\)
\(x=\dfrac{31}{10}.\dfrac{5}{2}\)
\(x=\dfrac{31}{2}.\dfrac{2}{2}\)
\(x=\dfrac{31}{2}.1\)
\(x=\dfrac{31}{2}\)
Vậy \(x=\dfrac{31}{2}\)
bài này mk tự làm ko sao chép trên mạng
nếu thấy đúng thì tick đúng cho mk nha
\(\dfrac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)
\(=\dfrac{5.\left(2^2\right)^{15}.\left(3^2\right)^9-2^2.3^{20}.\left(2^3\right)^9}{5.2^2.\left(3.2\right)^{19}-7.2^{29}.\left(3^3\right)^6}\)
\(=\dfrac{5.2^{30}.3^{18}-2^2.2^{27}.3^{20}}{5.2^2.2^{19}.3^{19}-7.2^{29}.3^{18}}\)
\(=\dfrac{5.2^{30}.3^{18}-2^{29}.3^{20}}{5.2^{28}.3^{19}-7.2^{29}.3^{18}}\)
\(=\dfrac{2^{29}.3^{18}.\left(5.2-3\right)}{2^{28}.3^{18}.\left(5.1.3-7.2.1\right)}\)
\(=\dfrac{2^{29}.3^{18}.1}{2^{28}.3^{18}.1}\)
\(=\dfrac{2^{29}}{2^{28}}\)
\(=2\)
a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{99.100}\)
= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
=\(\dfrac{1}{1}+0+0+...+0-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}\)
= \(\dfrac{99}{100}\)
a) 11.2+12.3+13.4+....+199.10011.2+12.3+13.4+....+199.100
= 11−12+12−13+13−14+....+199−110011−12+12−13+13−14+....+199−1100
=11+0+0+...+0−110011+0+0+...+0−1100
=1−11001−1100
= 99100