\(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

a, A = 1 - 1/2 + 1/2 - 1/3 + 1/3 -1/4 +... + 1/2017 - 1/2018

A = 1 - 1/2018 = 2017/2018

b, B = 5/2 . ( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2016 -1/2018)

B= 5/2 . ( 1/2 - 1/ 2018 )

B = 504/1009

c, C = 1/3.6 + 1/ 6.9 + 1/ 9.12 + ... + 1/ 30.33

C= 1/3 - 1/6 + 1/6 - 1/ 9 + 1/9 - 1/12 + ... + 1/30 - 1/33

C = 1/3 - 1/33

C= 10/33

1 tháng 5 2018

phan B mk quên nhân với 5/2

lấy 5/2 . 504/1009 = 1260/1009

a: \(A=\left(\dfrac{-3}{4}+\dfrac{-2}{9}-\dfrac{1}{36}\right)+\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{3}{5}\right)+\dfrac{1}{57}\)

\(=\dfrac{-27-8-1}{36}+\dfrac{5+1+9}{15}+\dfrac{1}{57}\)

=1/57

b: \(B=\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{3}\right)+\left(\dfrac{-1}{5}-\dfrac{5}{7}-\dfrac{3}{35}\right)+\dfrac{1}{41}\)

\(=\dfrac{3+1+2}{6}+\dfrac{-7-25-3}{35}+\dfrac{1}{41}\)

=1/41

c: \(C=\left(\dfrac{-1}{2}-\dfrac{1}{9}-\dfrac{7}{18}\right)+\left(\dfrac{3}{5}+\dfrac{2}{7}+\dfrac{4}{35}\right)+\dfrac{1}{107}\)

=1-1+1/107

=1/107

a: \(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2007}-\dfrac{1}{2008}=1-\dfrac{1}{2008}=\dfrac{2007}{2008}\)

b: \(Q=\dfrac{7}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2009\cdot2011}\right)\)

\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(=\dfrac{7}{2}\cdot\dfrac{2010}{2011}\simeq3,50\)

5 tháng 3 2018

2

a. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

=\(\dfrac{1}{2}-\dfrac{1}{100}\)

=\(\dfrac{49}{100}\)

5 tháng 4 2017

a, \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{n+a-n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)

Vậy \(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{a}{n\left(n+a\right)}\)

b,

\(A=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A=\dfrac{1}{2}-\dfrac{1}{100}=\dfrac{49}{100}\)

\(B=\dfrac{5}{1.4}+\dfrac{5}{4.7}+...+\dfrac{5}{100.103}\)

\(3B=\dfrac{5.3}{1.4}+\dfrac{5.3}{4.7}+...+\dfrac{5.3}{100.103}\)

\(3B=5\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{100.103}\right)\)

\(3B=5\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)

\(3B=5\left(1-\dfrac{1}{103}\right)=5\cdot\dfrac{102}{103}=\dfrac{510}{103}\)

\(B=\dfrac{510}{103}:3=\dfrac{170}{103}\)

\(C=\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{2499}\)

\(C=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{49.51}\)

\(2C=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{49.51}\)

\(2C=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\)

\(2C=\dfrac{1}{3}-\dfrac{1}{51}=\dfrac{16}{51}\)

\(C=\dfrac{16}{51}:2=\dfrac{8}{51}\)

Câu 1: 

a: ĐKXĐ: x+5<>0

hay x<>-5

b: ĐKXĐ: x-2<>0

hay x<>2

27 tháng 3 2017

A=\(\dfrac{2}{7}+\dfrac{-3}{8}+\dfrac{11}{7}+\dfrac{1}{3}+\dfrac{1}{7}+\dfrac{5}{-3}\)

A=\(\left(\dfrac{2}{7}+\dfrac{11}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{3}+\dfrac{5}{-3}\right)+\dfrac{-3}{8}\)

A=\(2+\dfrac{-4}{3}+\dfrac{-3}{8}\)

A=\(\dfrac{7}{24}\)

B=\(\dfrac{3}{17}+\dfrac{-5}{13}+\dfrac{-18}{35}+\dfrac{14}{17}+\dfrac{17}{-35}+\dfrac{-8}{13}\)

B=\(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{-18}{35}+\dfrac{17}{-35}\right)+\left(\dfrac{-5}{13}+\dfrac{-8}{13}\right)\)

B=\(\dfrac{17}{17}+\dfrac{-35}{35}+\dfrac{-13}{13}\)

B=\(1+\left(-1\right)+\left(-1\right)=-1\)

C=\(\dfrac{-3}{17}+\left(\dfrac{2}{3}+\dfrac{3}{17}\right)\)

C=\(\dfrac{-3}{17}+\dfrac{2}{3}+\dfrac{3}{17}=\left(\dfrac{-3}{17}+\dfrac{3}{17}\right)+\dfrac{2}{3}\)

C=0+\(\dfrac{2}{3}=\dfrac{2}{3}\)

D=\(\left(\dfrac{-1}{6}+\dfrac{5}{-12}\right)+\dfrac{7}{12}\)

D=\(\dfrac{-1}{6}+\dfrac{5}{-12}+\dfrac{7}{12}\)

D=\(\dfrac{-2}{12}+\dfrac{-5}{12}+\dfrac{7}{12}=\left(\dfrac{-2}{12}+\dfrac{-5}{12}\right)+\dfrac{7}{12}\)

D=\(\dfrac{-7}{12}+\dfrac{7}{12}=0\)

19 tháng 8 2017

Đăng ít thôi.

d) \(D=\dfrac{1}{1.2.3}+\dfrac{1}{3.4.5}+\dfrac{1}{4.5.6}+\dfrac{1}{5.6.7}+\dfrac{1}{6.7.8}+\dfrac{1}{7.8.9}+\dfrac{1}{8.9.10}\)

\(\Rightarrow2D=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}+\dfrac{2}{7.8.9}+\dfrac{2}{8.9.10}\)

\(\Rightarrow2D=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+\dfrac{1}{4.5}-\dfrac{1}{5.6}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)

\(\Rightarrow2D=\dfrac{1}{2.3}-\dfrac{1}{9.10}\)

\(\Rightarrow2D=\dfrac{22}{45}\)

\(\Rightarrow D=\dfrac{11}{45}\)

26 tháng 8 2017

Trả lời ít thôi.

T IÊU M Đại số lớp 6

bà cha m ra :v

16 tháng 5 2017

\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+\dfrac{1}{4\cdot6}+...+\dfrac{1}{7\cdot9}+\dfrac{1}{6\cdot8}\)

\(=\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{7\cdot9}\right)+\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{7\cdot9}\right)+\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{8}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{9}{9}-\dfrac{1}{9}\right)+\dfrac{1}{2}\left(\dfrac{4}{8}-\dfrac{1}{8}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{8}{9}+\dfrac{1}{2}\cdot\dfrac{3}{8}\)

\(=\dfrac{1}{2}\left(\dfrac{8}{9}+\dfrac{3}{8}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{64}{72}+\dfrac{27}{72}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{91}{72}\)

\(=\dfrac{91}{144}\)

16 tháng 5 2017

S=\(\dfrac{1}{1.3}+\dfrac{1}{2.4}+...+\dfrac{1}{6.8}\)

S=\(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{2}+...+\dfrac{1}{6}-\dfrac{1}{8}\right)\)

S=\(\dfrac{1}{2}.\left(\dfrac{1}{1}-\dfrac{1}{8}\right)\)

S=\(\dfrac{1}{2}.\left(\dfrac{8-1}{8}\right)\)

S=\(\dfrac{1}{2}.\dfrac{7}{8}\)

S=\(\dfrac{7}{16}\)

21 tháng 3 2017

2) Tinh nhanh:

a) \(\dfrac{5}{23}\) . \(\dfrac{17}{26}\) + \(\dfrac{5}{23}\) . \(\dfrac{10}{26}\) - \(\dfrac{5}{23}\)

= \(\dfrac{5}{23}\) . \(\left(\dfrac{17}{26}+\dfrac{10}{26}-1\right)\)

= \(\dfrac{5}{23}\) . \(\left(\dfrac{27}{26}-1\right)\) = \(\dfrac{5}{23}\) . \(\dfrac{1}{26}\)

= \(\dfrac{5}{598}\)

21 tháng 3 2017

b) \(\dfrac{1}{7}.\dfrac{5}{9}+\dfrac{5}{9}.\dfrac{2}{7}+\dfrac{5}{9}.\dfrac{1}{7}+\dfrac{5}{9}.\dfrac{3}{7}\)

= \(\dfrac{5}{9}.\left(\dfrac{1}{7}+\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{3}{7}\right)\)

= \(\dfrac{5}{9}\) . 1= \(\dfrac{5}{9}\)