K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

a ) <

b ) <

-2021/2020<1/2

15 tháng 4 2023

A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) ;  B = \(\dfrac{2020+2021}{2021+2022}\)

B = \(\dfrac{2020+2021}{2021+2022}\)   = \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\)

\(\dfrac{2020}{2021}\)   > \(\dfrac{2020}{2021+2022}\)

\(\dfrac{2021}{2022}\)     > \(\dfrac{2021}{2021+2022}\)

Cộng vế với vế ta có:

A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) > \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\) = B

Vậy A > B

 

15 tháng 4 2023

A =  \(\dfrac{10^{10}-1}{10^{11}-1}\) 

\(\times\) 10 = \(\dfrac{(10^{10}-1)\times10}{10^{11}-1}\) = \(\dfrac{10^{11}-10}{10^{11}-1}\) = 1 - \(\dfrac{9}{10^{11}-1}\) < 1

B = \(\dfrac{10^{10}+1}{10^{11}+1}\)

\(\times\) 10 = \(\dfrac{(10^{10}+1)\times10}{10^{11}+1}\)  = \(\dfrac{10^{11}+10}{10^{11}+1}\) = 1 + \(\dfrac{9}{10^{11}+1}\) > 1

Vì 10 A< 1< 10B

Vậy A < B

 

17 tháng 9 2019

Ta có:

2019.2021=2019.(2020+1)=2019.2020+2019 (1)

Lại có:

2020.2020=(2019+1).2020=2019.2020+2020 (2)

Vì 2019.2020=2019.2020 mà 2019<2020

=>(1)<(2)

=>..... 

17 tháng 9 2019

                                                                          Bài giải

Ta có : \(2019\text{ x }2021=2019\text{ x }2020+2019\)

          \(2020\text{ x }2020=2019\text{ x }2020+2020\)

\(\text{Vì }2019\text{ x }2020+2019< 2019\text{ x }2020+2020\text{ }\Rightarrow\text{ }2019\text{ x }2021< 2020\text{ x }2020\)

Tham khảo:

loading...

30 tháng 7 2020

Ta có : A = \(\frac{10^{2020}+1}{10^{2021}+1}\)

=> 10A = \(\frac{10^{2021}+10}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)

Lại có : \(B=\frac{10^{2021}+1}{10^{2022}+1}\)

=> \(10B=\frac{10^{2022}+10}{10^{2022}+1}=1+\frac{9}{10^{2022}+1}\)

Vì \(\frac{9}{10^{2022}+1}< \frac{9}{10^{2021}+1}\)

=> \(1+\frac{9}{10^{2022}+1}< 1+\frac{9}{10^{2022}+1}\)

=> 10B < 10A

=> B < A

b) Ta có : \(\frac{2019}{2020+2021}< \frac{2019}{2020}\)

Lại có : \(\frac{2020}{2020+2021}< \frac{2020}{2021}\)

=> \(\frac{2019}{2020+2021}+\frac{2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> \(\frac{2019+2020}{2020+2021}< \frac{2019}{2020}+\frac{2020}{2021}\)

=> B < A

13 tháng 2 2022

sai rồi

\(10A=\dfrac{10^{2021}+1+9}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)

\(10B=\dfrac{10^{2022}+1+9}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

mà \(10^{2021}+1< 10^{2022}+1\)

nên A>B

DD
2 tháng 3 2021

a) \(M=2020+2020^2+...+2020^{10}\)

\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)

\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)

\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).

b) Bạn làm tương tự câu a). 

2 tháng 3 2021

b, \(A=2021+2021^2+...+2021^{2020}\)

\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)

\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)

Vậy ta có đpcm 

26 tháng 9 2021

Ta có: \(B=2020.2021.2022=\left(2021-1\right).\left(2021+1\right).2021=\left(2021-1\right)^2.2021< 2021^2.2021=A\)

\(2.A=\frac{2^{2021}-2}{2^{2021}-1}=1-\frac{1}{2^{2021}-1}\)

\(2B=\frac{2^{2022}-2}{2^{2022}-1}=1-\frac{1}{2^{2022}-1}\)

dó \(\frac{1}{2^{2022}-1}< \frac{1}{2^{2021}-1}\Rightarrow1-\frac{1}{2^{2022}-1}>1-\frac{1}{2^{2021}-1}\Rightarrow A< B\)

HT

3 tháng 5 2023

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)

B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022

B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\) 

B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\) 

B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))

Vậy B > C