Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(2x-3)2+7
Vì (2x-3)2 \(\ge\) 0 với mọi x
=>(2x-3)2+7 \(\ge\) 7 với mọi x
=>AMin=7
Dấu "=" xảy ra<=>2x-3=0<=>x=3/2
B=15-|2x+1|
Vì |2x+1| \(\ge\) 0 với mọi x => -|2x+1| \(\le\) 0 với mọi x
=>15-|2x+1| \(\le\) 15 với mọi x
=>BMax=15
Dấu "=" xảy ra<=>2x+1=0<=>x=-1/2
\(C=\frac{6}{\left(3x+2\right)^2+18}\)
C lớn nhất <=> (3x+2)2+18 nhỏ nhất
Vì (3x+2)2+18 \(\ge\) 18 với mọi x
=>\(C\le\frac{6}{18}=\frac{1}{3}\)
=>CMax=1/3
Dấu "=" xảy ra <=> 3x+2=0<=>x=-2/3
D=(x2+2)2-21
Vì x2+2 \(\ge\) 2 với mọi x
=>(x2+2)2 \(\ge\) 22=4 với mọi x
=>(x2+2)2-21 \(\ge\) 4-21=-17 với mọi x
=>DMin=-17
Dấu "=" xảy ra<=>x=0
\(\left(x^2-9\right)^2+\left|y-3\right|-1\)
Nhận thấy rằng :
\(\hept{\begin{cases}\left(x^2-9\right)^2\ge0\forall x\\\left|y+3\right|\ge0\forall y\end{cases}\Rightarrow}\left(x^2-9\right)^2+\left|y+3\right|\ge0\forall x,y\)
Cộng -1 vào cả hai vế :
\(\Rightarrow\left(x^2-9\right)^2+\left|y+3\right|-1\ge-1\)
Dấu = xảy ra <=> \(\hept{\begin{cases}x^2-9=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\pm3\\y=-3\end{cases}}\)
Vậy GTNN của biểu thức = -1 khi ( x ; y ) = ( 3 ; -3 ) hoặc ( x ; y ) = ( -3 ; -3 )
Sửa đề:
A=/x+5/+10
Ta có: /x+5/>= 0 với mọi x>=0
=> A=/x+5/+10 >= 10
=> Amin=10. Dấu "=" xảy ra <=> x+5=0<=> x=-5
Vậy...
\(\text{a) }A=\left|x+5\right|+10\)
\(\text{Vì }\left|x+5\right|\ge0\forall x\)
\(\Rightarrow A=\left|x+5\right|+10\ge10\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|x+5\right|=0\)
\(\Rightarrow x=-5\)
\(\text{Vậy Min}_A=10\Leftrightarrow x=-5\)
\(\text{b) }\left|3-x\right|+5\)
\(\text{Vì }\left|3-x\right|\ge0\forall x\)
\(\Rightarrow\left|3-x\right|+5\ge5\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left|3-x\right|=0\)
\(\Rightarrow x=3\)
\(\text{Vậy Min}_B=5\Leftrightarrow x=3\)
\(\text{d) }D=\left(x+2\right)^2+15\)
\(\text{Vì ( x + 2 )}^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+15\ge15\)
\(\text{Dấu ''='' xảy ra khi :}\)
\(\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
https://goo.gl/BjYiDyhttps://goo.gl/BjYiDy