K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{HAB}=\widehat{KAC}\)

Do đó: ΔAHB=ΔAKC

Suy ra: AH=AK

c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

HB=KC

Do đó: ΔHBM=ΔKCN

Suy ra: \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hay ΔOBC cân tại O

24 tháng 2 2019

A B C M N O H K 1 2 1 2

Cm: a) Ta có: góc ABC + góc ABM = 1800 (kề bù)

                  góc ACN + góc ACB = 1800 (kề bù)

và góc ABC = góc ACB (vì t/giác ABC cân tạo A)

=> góc ABM = góc ACN

Xét t/giác ABM và t/giác ACN

có AB = AC (gt)

    góc ABM = góc ACN (cmt)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) ko đề

c) Xét t/giác AHB và t/giác AKC

có  góc H1 = góc K1 = 900 (gt)

AB = AC (gt)

góc HAB = góc KAC (vì t/giác ABM = t/giác ACN)

=> t/giác AHB = t/giác AKC (ch - gn)

=> AH = AK (hai cạnh tương ứng)

Xét t/giác AHO và t/giác AKO

có AH = AK (cmt)

  góc H1 = góc K1 = 900 (gt)

  AO : chung

=> t/giác AHO = t/giác AKO (ch - cgv)

=> HO = KO(hai cạnh tương ứng)

Mà HB + BO = HO

  KC + CO = OK

và HB = KC (vì t/giác AHB = t/giác AKC)

=> BO = CO 

=> t/giác OBC là t/giác cân tại O

30 tháng 1 2022

a) \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).

Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)

Xét \(\Delta ABM\) và \(\Delta ACN:\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)

\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)

b) Xét \(\Delta ABH\) và \(\Delta ACK:\)

\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)

\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).

\(\Rightarrow\) AH = AK (2 cạnh tương ứng).

c) Xét \(\Delta AOH\) và \(\Delta AOK:\)

\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).

\(\Rightarrow\) OH = OK (2 cạnh tương ứng).

Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)

\(\Rightarrow\) OB = OC.

\(\Rightarrow\Delta OBC\) cân tại O.

a) Ta có: \(\widehat{ABM}+\widehat{ABC}=180^0\)(hai góc kề bù)

\(\widehat{ACN}+\widehat{ACB}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABM}=\widehat{ACN}\)(cmt)

BM=CN(gt)

Do đó: ΔABM=ΔACN(c-g-c)

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .a. Chứng minh tam giác ABM = tam giác ACNb. Kẻ BH vuông góc AM; CK vuông góc AN (H...
Đọc tiếp

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng

2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .
a. Chứng minh tam giác ABM = tam giác ACN
b. Kẻ BH vuông góc AM; CK vuông góc AN (H thuộc AM; K thuộc AN ). Chứng minh AH = AK.
c. Gọi O là giao điểm của BH và KC. Tam giác OBC là tam giác gì ? Vì sao ?

3. Cho tam giác ABD, có góc B = 2 góc D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của BA lấy BE=BH. Đường thẳng EH cắt AD tại F. Chứng minh FH=FA=FD

4. Cho góc nhọn  \(\widehat{xOy}\) . Gọi I là một điểm thuộc tia phân giác của \(\widehat{xOy}\). Kẻ IA \(\perp\) Ox (Điểm A thuộc tia Ox ) và IB \(\perp\)  Oy (Điểm B thuộc tia Oy )

a. Chứng minh IA = IB

b. Cho biết OI = 10cm, AI = 6cm. Tính OA

c. Gọi K là giao điểm của  BI và Ox và M là giao điểm của AI với Oy. Chứng minh ba điểm B, K, C thẳng hàng

 

 

1
11 tháng 2 2016

Câu 1 trước

1 tháng 5 2020

a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB

Ta có: ABC + ABE = 180o (2 góc kề bù) và ACB + ACN = 180o (2 góc kề bù)

=> ABE = ACN

Xét △ABE và △ACN

Có: AB = AC (cmt)

     ABE = ACN (cmt)

       BE = CN (gt)

=> △ABE = △ACN (c.g.c)

=> AE = AN (2 cạnh tương ứng)

=> △AEN cân tại A

b, Xét △HBE vuông tại H và △KCN vuông tại K

Có: BE = CN (gt)

    HEB = KNC (△ABE = △ACN)

=> △HBE = △KCN (ch-gn)

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
21 tháng 2 2020

a, tam giác ABC cân tại A (Gt) 

=> góc ABC = góc ACB (tc)

góc ABC + góc ABM = 180

góc ACB + góc ACN = 180

=> góc ABM = góc ACN ( do góc ABC = góc ACB do tam giac ABC cân nhá )

 xét tam giác ABM và tam giác ACN có :

BM = CN (gt)

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABM = tam giác ACN (c-g-c)

=> AM = AN (đn)

=> tam giác AMN cân tại A (đn)

b, tam giác AMN cân tại A (câu a)

=> góc AMN = góc ANM (tc)

xét tam giác MBH và tam giác NCK có :

MB = CN (gt)

góc MHB = góc CKN = 90 

=> tam giác MBH = tam giác NCK (ch-gn)

=> BH = CK (đn)

c, tam giác MBH = tam giác NCK (câu b)

=> góc HBM = góc KCN (đn)

góc HBM = góc CBO (đối đỉnh

) góc KCN = góc BCO (đối đỉnh)

=> góc CBO = góc BCO 

=> tam giác BOC cân tại O

21 tháng 2 2020

Bạn Hacker Mũ Trắng 1902 làm đúng lè

hok tốt

12 tháng 11 2018

a) \(\Delta ABM\)và \(\Delta ACM\)

+ AB = AC(gt)

+ BM = CM(gt)

+ Chung AM 

Vậy \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

Suy ra \(\widehat{ABC}=\widehat{ACB}\)(hai góc tương ứng)

=> \(180^0-\widehat{ABC}=180^0-\widehat{ACB}\)

\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)

Xét \(\Delta ABD\)và \(\Delta ACE\)

\(\widehat{ABD}=\widehat{ACE}\)

+ AB = AC (gt)

+BD = EC(gt)

\(\Rightarrow\Delta ABD=\Delta ACE \left(c.g.c\right)\)

12 tháng 11 2018

Xét \(\Delta AHB\)và \(\Delta AKC\)

+ AH = AK (gt)

+ AB = AC (gt)

\(\widehat{DAB}=\widehat{EAC}\)(hai góc tương ứng)

\(\Rightarrow\Delta AHB=\Delta AKC\left(c.g.c\right)\)

=> HB=CK ( hai cạnh tương ứng)

d) Vì O là giao điểm của HB và AM nên O,A,M nằm trên cùng một đường thẳng 

Nên \(\widehat{OAM}=\widehat{BAM}+\widehat{BAO}=\widehat{CAM}+\widehat{CAO}\)

\(\widehat{BAM}=\widehat{CAM}\)vì hai góc tương ứng (cmt)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\)

Xét \(\Delta BAO=\Delta CAO\)

+ AB = CA (gt)

+ Chung AO

\(\widehat{BAO}=\widehat{CAO}\)(cmt)

\(\Delta BAO=\Delta CAO\left(c.g.c\right)\)

=>OB = OC (hai cạnh tương ứng)