K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

a, tam giác ABC cân tại A (Gt) 

=> góc ABC = góc ACB (tc)

góc ABC + góc ABM = 180

góc ACB + góc ACN = 180

=> góc ABM = góc ACN ( do góc ABC = góc ACB do tam giac ABC cân nhá )

 xét tam giác ABM và tam giác ACN có :

BM = CN (gt)

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABM = tam giác ACN (c-g-c)

=> AM = AN (đn)

=> tam giác AMN cân tại A (đn)

b, tam giác AMN cân tại A (câu a)

=> góc AMN = góc ANM (tc)

xét tam giác MBH và tam giác NCK có :

MB = CN (gt)

góc MHB = góc CKN = 90 

=> tam giác MBH = tam giác NCK (ch-gn)

=> BH = CK (đn)

c, tam giác MBH = tam giác NCK (câu b)

=> góc HBM = góc KCN (đn)

góc HBM = góc CBO (đối đỉnh

) góc KCN = góc BCO (đối đỉnh)

=> góc CBO = góc BCO 

=> tam giác BOC cân tại O

21 tháng 2 2020

Bạn Hacker Mũ Trắng 1902 làm đúng lè

hok tốt

suy nghĩ hơi lâu à nha ~~~ đợi chút

8 tháng 2 2020

https://olm.vn/hoi-dap/detail/8238415826.html Link câu trl

30 tháng 1 2022

a) \(\Delta ABC\) cân tại A (gt).

\(\Rightarrow\left\{{}\begin{matrix}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{matrix}\right.\) (Tính chất tam giác cân).

Mà \(\widehat{ABC}+\widehat{ABM}=180^o;\widehat{ACB}+\widehat{ACN}=180^o.\)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}.\)

Xét \(\Delta ABM\) và \(\Delta ACN:\)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right).\\ MB=CN\left(gt\right).\\ AB=AC\left(cmt\right).\)

\(\Rightarrow\) \(\Delta ABM\) \(=\) \(\Delta ACN\left(c-g-c\right).\)

b) Xét \(\Delta ABH\) và \(\Delta ACK:\)

\(AB=AC\left(cmt\right).\\ \widehat{AHB}=\widehat{AKC}\left(=90^o\right).\\ \widehat{HAB}=\widehat{KAC}\left(\Delta ABM=\Delta ACN\right).\)

\(\Rightarrow\Delta ABH=\Delta ACK\) (cạnh huyền - góc nhọn).

\(\Rightarrow\) AH = AK (2 cạnh tương ứng).

c) Xét \(\Delta AOH\) và \(\Delta AOK:\)

\(AH=AK\left(cmt\right).\\ AOchung.\\ \widehat{AHO}=\widehat{AKO}\left(=90^o\right).\)

\(\Rightarrow\) \(\Delta AOH\) \(=\) \(\Delta AOK\) (cạnh huyền - cạnh góc vuông).

\(\Rightarrow\) OH = OK (2 cạnh tương ứng).

Mà \(\left\{{}\begin{matrix}OB=OH-HB;OC=OK-KC.\\HB=KC\left(\Delta ABH=\Delta ACK\right).\end{matrix}\right.\)

\(\Rightarrow\) OB = OC.

\(\Rightarrow\Delta OBC\) cân tại O.

8 tháng 2 2020

a, tam giác ABC cân tại A (Gt)

=> góc ABC = góc ACB (tc)

góc ABC + góc ABM = 180

góc ACB + góc ACN = 180

=> góc ABM = góc ACN 

xét tam giác ABM và tam giác ACN có : BM = CN (gt)

AB = AC do tam giác ABC cân tại A (gt)

=> tam giác ABM = tam giác ACN (c-g-c)

=> AM = AN (đn)

=> tam giác AMN cân tại A (đn)

b, tam giác AMN cân tại A (câu a)

=> góc AMN = góc ANM (tc)

xét tam giác MBH và tam giác NCK có : MB = CN (gt)

góc MHB = góc CKN = 90 

=> tam giác MBH = tam giác NCK (ch-gn)

=> BH = CK (đn)

c, tam giác MBH = tam giác NCK (câu b)

=> góc HBM = góc KCN (đn)

góc HBM = góc CBO (đối đỉnh)

góc KCN = góc BCO (đối đỉnh)

=> góc CBO = góc BCO 

=> tam giác BOC cân tại O (đl)