Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì SA là tiếp tuyến đường tròn (O) với A là tiếp điểm
=> ^SAO = 900 hay tam giác SAO vuông tại A
Theo định lí Pytago tam giác SAO ta có :
\(SA=\sqrt{SO^2-AO^2}=\sqrt{25-9}=4\)cm
b, Xét tam giác SAO vuông tại A, AH là đường cao
Áp dụng hệ thức : \(AH.SO=AS.AO\Rightarrow AH=\frac{AS.AO}{SO}=\frac{4.3}{5}=\frac{12}{5}\)cm
Áp dụng hệ thức : \(AO^2=HO.SO\Rightarrow HO=\frac{AO^2}{SO}=\frac{9}{5}\)cm
c, Ta có : SB = SA ( tc tiếp tuyến cắt nhau )
AO = BO = R
Vậy SO là đường trung trực đoạn AB
mà AH vuông SO => HB vuông SO
=> A;H;B thẳng hàng
Câu hỏi của Mafia - Toán lớp 9 - Học toán với OnlineMath
Em có thể tham khảo tại đây nhé.
OMABICDEF
a) Ta thấy OAM và OBM là các tam giác vuông có chung cạnh huyền OM nên A, O, B, M cùng thuộc đường tròn đường kính OM.
b) Theo tính chất hai tiếp tuyến cắt nhau thì MA = MB và MI là tia phân giác góc AMB.
Vậy thì tam giác MAB cân tại M, có phân giác MI đồng thời là đường cao.
Vậy nên \(OM\perp AB\) tại I.
c) Do D thuộc đường tròn (O) nên OC = OB = OD.
Suy ra tam giác BDC vuông tại D.
Xét tam giác vuông CBM, đường cao BD, ta có: \(MD.MC=BM^2\) (Hệ thức lượng)
Xét tam giác vuông OBM, đường cao BI, ta có: \(MI.MO=BM^2\) (Hệ thức lượng)
Vậy nên MD.MC = MI.MO
d) Ta thấy CEF và CAF là các tam giác vuông có chung cạnh huyền CF nên FAEC nội tiếp đường tròn đường kính CF.
\(\Rightarrow\widehat{FCE}=\widehat{EAB}\) (Hai góc nội tiếp cùng chắn cung CO)
Lại có O,E, A, M, B cùng thuộc đường tròn đường kính OM nên \(\widehat{EAB}=\widehat{EMB}\) (Hai góc nội tiếp cùng chắn cung EB)
\(\Rightarrow\widehat{FCE}=\widehat{EMB}\)
Ta có \(\widehat{EMB}+\widehat{ECB}=90^o\Rightarrow\widehat{FCE}+\widehat{ECB}=90^o\)
\(\Rightarrow\widehat{FCB}=90^o\)
Vậy FC là tiếp tuyến của đường tròn (O).
Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng j: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [O, M] Đoạn thẳng l: Đoạn thẳng [M, H] Đoạn thẳng m: Đoạn thẳng [H, O] Đoạn thẳng n: Đoạn thẳng [A, M] Đoạn thẳng p: Đoạn thẳng [M, B] Đoạn thẳng q: Đoạn thẳng [A, O] Đoạn thẳng r: Đoạn thẳng [O, B] Đoạn thẳng t: Đoạn thẳng [N, B] Đoạn thẳng b: Đoạn thẳng [E, J_1] Đoạn thẳng e: Đoạn thẳng [N, E] Đoạn thẳng f_1: Đoạn thẳng [E, B] Đoạn thẳng g_1: Đoạn thẳng [A, E] O = (6.36, -0.08) O = (6.36, -0.08) O = (6.36, -0.08) Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm M: Điểm trên f Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm H: Giao điểm đường của f, g Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm A: Giao điểm đường của c, h Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm B: Giao điểm đường của c, i Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm I: Giao điểm đường của g, j Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm K: Giao điểm đường của j, k Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm N: A đối xứng qua F Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm E: Giao điểm đường của a, k Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N Điểm J: Trung điểm của A, N
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có tam giác MAB cân tại M có MK là phân giác nên đồng thời là đường trung tuyến. Vậy thì K là trung điểm AB hay \(AK=\frac{AB}{2}\)
Ta thấy các tam giác MHO, MAO, MBO đều là các tam giác vuông chung cạnh huyền MO nên M, H, A, O B cùng thuộc đường tròn đường kính MO.
b) Do K là trung điểm AB nên theo tính chất đường kính dây cung, ta có \(\widehat{IKO}=90^o\)
Suy ra \(\Delta IKO\sim\Delta MHO\left(g-g\right)\Rightarrow\frac{OI}{OM}=\frac{OK}{OH}\Rightarrow OI.OH=OM.OK\)
Xét tam giác vuông MBO, đường cao BK, ta có: \(OK.OM=OB^2=R^2\)
Vậy nên \(OI.OH=OK.OM=R^2\)
c) Ta thấy do trung điểm của BN cắt OM tại E nên EN = EB
Lại có EB = EA vì OM là đường trung trực của AB
Suy ra EA = EN hay tam giác EAN cân tại E.
Gọi J là trung điểm AN.
Xét tam giác cân EAN có EJ là trung tuyến nên đồng thời là đường cao.
Vậy thì \(EJ\perp OA\) hay EJ // AM.
Xét tam giác OAM, áp dụng định lý Talet ta có:
\(\frac{OE}{OM}=\frac{OF}{OA}=\frac{2}{3}\)