Tìm các số thực x thỏa mãn 1/(x+1) + 1/(x+2) + 1/(3x-3) = 1/5x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

ĐKXĐ: x khác -2;-1;0;1.

\(\frac{1}{x+1}+\frac{1}{x+2}+\frac{1}{3x-3}=\frac{1}{5x}\)

\((\frac{1}{x+1}-\frac{1}{5x})+(\frac{1}{x+2}+\frac{1}{3x-3})=0\)

\(\frac{4x-1}{5x(x+1)}+\frac{4x-1}{(x+2)(3x-3)}=0\)

hoặc \(4x-1=0\) hoặc \(5x(x+1)=(x+2)(3x-3)\)

Phương trình thứ nhất có nghiệm x=0,25 (t/m đkxđ)

Phương trình thứ 2 vô nghiệm.

Vậy pt có tập nghiệm S={0,25}.

Chúc bạn học tốt!

11 tháng 11 2015

\(\frac{x}{x^2-x+1}=\frac{1}{2}\Leftrightarrow x^2-3x+1=0\)

\(P=\frac{x^2\left(x^2-3x+1\right)-\left(x^2-3x+1\right)+15x}{x\left(x^2-3x+1\right)+\left(x^2-3x+1\right)+9x}\)

\(=\frac{0-0+15x}{0+0+9x}=\frac{5}{5}\)

19 tháng 8 2018

Giải PT : x2 - 3x + 1 = 0. thay x vào là giải đc

10 tháng 4 2019

Bài 1 dễ thì tự làm

Bài 2

\(y^2+2xy-3x-2=0\Leftrightarrow y^2+2xy+x^2=x^2+3x+2\)

\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)

Vế trái là số chính phương vế phải là tích 2 số nguyên liên tiếp nên 1 trong 2 số x+1 và x+2 phải có 1 số bàng 0

\(\Rightarrow y=-x\)

\(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}}}}\)

Vậy \(\left(x;y\right)=\left(-1;1\right);\left(-2;2\right)\)

2 tháng 3 2020

Bài 2: 

Tìm GTLN: \(x^2+xy+y^2=3\Leftrightarrow xy=\left(x+y\right)^2-3\Rightarrow xy\ge-3\Rightarrow-7xy\le21\)

\(P=2\left(x^2+xy+y^2\right)-7xy\le2.3+21=27\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\xy=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\)

Tìm GTNN: 

 Chứng minh \(xy\le\frac{1}{2}\left(x^2+y^2\right)\Rightarrow\frac{3}{2}xy\le\frac{1}{2}\left(x^2+y^2+xy\right)\)

\(\Rightarrow\frac{3}{2}xy\le\frac{3}{2}\Rightarrow xy\le1\Rightarrow-7xy\ge-7\)

\(P=2\left(x^2+xy+y^2\right)-7xy\ge2.3-7=-1\)

Chúc bạn học tốt.

16 tháng 3 2020

Làm bài 1 ha :) 

Áp dụng BĐT Cô si ta có:

\(\left(1-x^3\right)+\left(1-y^3\right)+\left(1-z^3\right)\ge3\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

\(\Leftrightarrow\frac{3-\left(x^3+y^3+z^3\right)}{3}\ge\sqrt[3]{\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)}\)

Mặt khác:\(\frac{3-\left(x^3+y^3+z^3\right)}{3}\le\frac{3-3xyz}{3}=1-xyz\)

Khi đó:

\(\left(1-xyz\right)^3\ge\left(1-x^3\right)\left(1-y^3\right)\left(1-z^3\right)\)

Giống Holder ghê vậy ta :D