Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7
\(a,A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
GTNN \(A=4\) khi \(\left(x-1\right)^2=0\Rightarrow x=1\)
\(b,B=x^2-x+1\)
\(=\left(x^2-2\cdot\frac{1}{2}x+\frac{1}{4}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(c,C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
Đặt \(x^2+5x=t\)
\(\Rightarrow C=\left(t-6\right)\left(t+6\right)\)
\(=t^2-36\)
\(\left(x^2+5x\right)^2-36\ge36\forall x\)
\(d,D=x^2+5y^2-2xy+4y-3\)
\(=\left(x^2-2xy+y^2\right)+\left(4y^2+4y+1\right)-4\)
\(=\left(x-y\right)^2+\left(2y+1\right)^2-4\ge-4\)
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
2) a) Ta có B = \(\frac{x+2}{x-2}-\frac{x-2}{x+2}-\frac{16}{4-x^2}=\frac{\left(x+2\right)^2-\left(x-2\right)^2+16}{\left(x-2\right)\left(x+2\right)}=\frac{8\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{8}{x-2}\)
Khi |x - 1| = 2
=> \(\orbr{\begin{cases}x-1=2\\x-1=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)
Khi x = 3 (thỏa mãn) => A = \(\frac{3^2-2.3}{3+1}=\frac{3}{4}\)
Khi x = - 1 (không thỏa mãn) => Không tìm được A
b) Ta có P = \(A.B=\frac{x^2-2x}{x+1}.\frac{8}{x-2}=\frac{8x\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\frac{8x}{x+1}\)
Đẻ P < 8
=> \(\frac{8x}{x+1}< 8\Leftrightarrow\frac{x}{x+1}< 1\)
=> \(\orbr{\begin{cases}x< x+1\left(x>-1\right)\\x>x+1\left(x< -1\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}0x< 1\left(tm\right)\\0x>1\left(\text{loại}\right)\end{cases}}\)
Vậy x > - 1 thì P < 8
\(A=x^2-8x+1=\left(x^2-8x+16\right)-15=\left(x+4\right)^2-15\)
Ta có \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2-15\le-15\)
\(\Rightarrow Max_A=-15\Leftrightarrow\left(x+4\right)^2-15=-15\)
\(\Leftrightarrow\left(x+4\right)^2=0\Leftrightarrow x=-4\)
a) ta có: A = x^2 - 8x + 1 = x^2 - 2.4.x + 16 - 15 = (x-4)^2 -15
=> giá trị nhỏ nhất của A = -15
b) ta có: B = 4 - x^2 + 4x = - (x^2 -4x + 4) + 8 = -(x-2)^2 +8
=> giá trị lớn nhất của B = 8
c) ta có: C = 3x^2 - 2x + 1
\(^2\ \)=> 3C =9 x^2 - 6x + 3
3C = 9x^2 - 2.3.x + 1 + 2
3C = (3x-1)^2 + 2
=> giá trị nhỏ nhất của 3C = 2 => giá trị nhỏ nhất của C = 2/3
a, \(A=x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi x=-1/2
Vậy Amin=3/4 khi x=-1/2
b,\(B=2x^2-5x-2\)
\(\Rightarrow2B=4x^2-10x-4=\left(4x^2-10x+\frac{25}{4}\right)-\frac{41}{4}=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\)
Vì \(\left(2x-\frac{5}{2}\right)^2\ge0\Rightarrow2B=\left(2x-\frac{5}{2}\right)^2-\frac{41}{4}\ge-\frac{41}{4}\Rightarrow B\ge-\frac{41}{8}\)
Dấu "=" xảy ra khi x=5/4
Vậy Bmin=-41/8 khi x=5/4
c,\(C=x^2+5y^2+2xy-y+3=\left(x^2+2xy+y^2\right)+\left(4y^2-y+\frac{1}{16}\right)+\frac{47}{16}=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\)
Vì\(\hept{\begin{cases}\left(x+y\right)^2\ge0\\\left(2y-\frac{1}{4}\right)^2\ge0\end{cases}}\Rightarrow\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2\ge0\)
\(\Rightarrow C=\left(x+y\right)^2+\left(2y-\frac{1}{4}\right)^2+\frac{47}{16}\ge\frac{47}{16}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{8}\\y=\frac{1}{8}\end{cases}}}\)
Vậy Cmin=47/16 khi x=-1/8,y=1/8
a, Để C có nghĩa thì \(\hept{\begin{cases}2x-2\ne0\\2-2x\ne0\end{cases}\Rightarrow}x\ne1\)
b, Với x khác 1 thì
\(C=\frac{x}{2x-2}+\frac{x^2+1}{2-2x}=\frac{-x}{2-2x}+\frac{x^2+1}{2-2x}=\frac{x^2-x+1}{2-2x}\)
c, \(C=-0,5\Rightarrow\frac{x^2-x+1}{2-2x}=\frac{-1}{2}\)
\(\Rightarrow2\left(x^2-x+1\right)=\left(2-2x\right).\left(-1\right)\)
\(\Rightarrow2x^2-2x+2=-2+2x\)
\(\Rightarrow2x^2-2x+2+2-2x=0\)
\(\Rightarrow2x^2-4x+4=0\Rightarrow2\left(x^2-2x+2\right)=0\)
\(x^2-2x+2=\left(x-1\right)^2+1>0\forall x\)
Do đó: \(2\left(x^2-2x+2\right)>0\forall x\)
Vậy \(x\in\varnothing\)
1,\(A=2x^2-6x+7\)
\(=2\left(x^2-3x+\frac{9}{4}\right)+\frac{5}{2}\)
\(=2\left(x-\frac{3}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
Dấu "=" khi \(x=\frac{3}{2}\)
2,\(B=\frac{2x^2-6x+5}{x^2-2x+1}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow Bx^2-2Bx+B=2x^2-6x+5\)
\(\Leftrightarrow x^2\left(B-2\right)+2x\left(3-B\right)+B-5=0\)(1)
*Với B = 2 thì \(\left(1\right)\Leftrightarrow x^2\left(2-2\right)+2x\left(3-2\right)+2-5=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\frac{3}{2}\left(TmĐKXĐ\right)\)
*Với \(B\ne2\)thì pt (1) là pt bậc 2 ẩn x tham số B
Pt (1) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow\left(3-B\right)^2-\left(B-2\right)\left(B-5\right)\ge0\)
\(\Leftrightarrow9-6B+B^2-B^2+7B-10\ge0\)
\(\Leftrightarrow B\ge1\)
Dấu "=" xảy ra khi \(\left(1\right)\Leftrightarrow-x^2+4x-4=0\)
\(\Leftrightarrow-\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(TmĐKXĐ\right)\)
Thấy 1 < 2 nên BMin = 1<=> x = 2
Vậy ....
A=(9x2-6x+1)+(7x2+7)-1=(3x2+1)2+7(x2+7)-1
Vì: (3x2+1)2\(\ge\)0 và 7(x2+7)\(\ge\)0
Nên:A\(\ge\) -1
B=\(\frac{A-2}{\left(x-1\right)^2}\)\(\ge\) -3
\(A=x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\)
Vậy \(A_{min}=1\Leftrightarrow x=-1\)
\(B=x^2+4x=6=x^2+4x+4+2=\left(x+2\right)^2+2\ge2>0\)
Vậy \(B_{min}=2\Leftrightarrow x=-2\)
\(A=25x^2-20x+7\)
\(A=\left(25x^2-20x+4\right)+3\)
\(A=\left(5x-2\right)^2+3>0\)
Học tốt
\(a,A=x^2-2x+2=\left(x-1\right)^2+1\ge1\)
dấu"=" xảy ra<=>x=1
\(b,B=2x^2-5x+2=2\left(x^2-\dfrac{5}{2}x+1\right)=2\left(x^2-2.\dfrac{5}{4}x+\dfrac{25}{16}-\dfrac{9}{16}\right)\)
\(=2\left[\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{16}\right]=2\left(x-\dfrac{5}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
dấu"=" xảy ra<=>x=5/4
c,\(C=x^2+2xy+4y^2+3=\left(x+y\right)^2+3\left(y^2+1\right)\ge3\)
dấu"=" xảy ra<=>x=y=0
d,\(D=\left|x-1\right|+|2x-1|=|1-x|+|2x-1|\ge|1-x+2x-1|\)
\(=|x|\ge0\)
dấu"=" xảy ra<=>\(x=0\)