Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Thị Linh Chi - Toán lớp 6 - Học toán với OnlineMath
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 $$ abc $$ 999 nên:
100 $$ n^2 -1 $$ 999 => 101 $$ n^2 $$ 1000 => 11 $$ 31 => 39 $$ 4n - 5 $$ 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
Thử lại thấy đúng. Vậy có một số tự nhiên có ba chữ số thoả mãn yêu cầu đề bài là 675
Câu 3:
bạn cứ áp dụng cái \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
Câu 4:
từ giả thiết :\(a+b+c+\sqrt{abc}=4\Leftrightarrow\sqrt{abc}=4-a-b-c\Leftrightarrow abc=\left(4-a-b-c\right)^2\)
ta có: \(a\left(4-b\right)\left(4-c\right)=a\left(16-4c-4b+bc\right)=16a-4ac-4ab+abc\)
\(=16a-4ab-4ac+\left[4-\left(a+b+c\right)\right]^2=16a-4ab-4ac+16-8\left(a+b+c\right)+\left(a+b+c\right)^2\)
\(=a^2+b^2+c^2-2ab-2ac+2bc+8a-8b-8c+16\)
\(=\left(a-b-c\right)^2+8\left(a-b-c\right)+16=\left(a-b-c+4\right)^2\)
\(\Rightarrow\sqrt{a\left(4-b\right)\left(4-c\right)}=a-b-c+4\)(vì \(a-b-c+4=a-b-c+a+b+c+\sqrt{abc}=2a+\sqrt{abc}>0\))
các căn thức còn lại tương tự ...
Giả thiết có: abc+bca+cda+dab = a+b+c+d+\(\sqrt{2012}\)
\(\Leftrightarrow\) (abc+bca+cda+dab-a-b-c-d)2 =2012
\(\Leftrightarrow\) \(\left[\left(abc-c\right)+\left(dab-d\right)+\left(bcd-b\right)+\left(cda-a\right)\right]^2\) = 2012
\(\Leftrightarrow\) \(\left[c\left(ab-1\right)+d\left(ab-1\right)+b\left(cd-1\right)+a\left(cd-1\right)\right]^2\) = 2012
\(\Leftrightarrow\) \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) = 2012
Áp dụng BĐT Bunhia cho 2 cặp số: (ab-1 ; a+b);(cd-1 ; c+d)
Ta có: \(\left[\left(ab-1\right)\left(c+d\right)+\left(ab-1\right)\left(a+b\right)\right]^2\) \(\le\) \(\left[\left(ab-1\right)^2+\left(a+b\right)^2\right]\left[\left(cd-1\right)^2+\left(c+d\right)^2\right]\)
\(\Leftrightarrow\) 2012 \(\le\) ( a2b2-2ab+1+a2+2ab+b2) (c2d2-2cd+1+c2+2cd+d2)
\(\Leftrightarrow\) 2012\(\le\) ( a2b2 +a2+b2+1)(c2d2+c2+d2+1)
\(\Leftrightarrow\) 2012 \(\le\) (a2+1)(b2+1)(c2+1)(d2+1) (đpcm)
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)