K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Ta có: A và H đối xứng nhau qua DF

nên DF là đường trung trực của AH

=>B là trung điểm của AH và DF⊥AH tại B

Xét tứ giác DBAC có 

\(\widehat{ABD}=\widehat{ACD}=\widehat{BDC}=90^0\)

Do đó: DBAC là hình chữ nhật

c: Xét ΔDEF có 

A là trung điểm của EF

AB//DE

Do đó: B là trung điểm của DF

Xét tứ giac DAFH có 

B là trung điểm của DF

B là trung điểm của AH

Do đó: DAFH là hình bình hành

mà AD=AF

nên DAFH là hình thoi

5 tháng 11 2017

Ta có IM Vuông góc với AB ( vì I đối xứn với M qua AB)

Mà D là giao điểm của AB và MI

=> MD vuông góc với AB hay góc ADM = 90°

Ta có AC vuông góc với MK( vìk đối xứng với M qua AC)

Mà E là giao điểm của AC và MK

=> Góc AEM =90°

Tứ giác ADMK có 

Góc A= Góc D =góc E = 90°

=> ADMK là hình chữ nhật

B) ta có D là trung điểm AB

M là trung điểm BC

=> DM là đường trung bình của ∆ ABC

=> DM = 1/2 AC

Ta có DM = AE ( ADMK là hình chữ nhật)

=> AE = 1/2 AC 

=> E là trung điểm AC 

Tứ giác AMCK có

EA= EC ( E là trung điểm AC)

EK= EM( k đối xứng với M qua AC , E là giao điểm(

=> AMCK là hình bình hành

Và có AC vuông góc với MK tại E 

=> AMCK là hình thoi

( Cũng có thể chứng minh như sau ta có ∆ ABC là ∆ vuông có AM là trung tuyến 

Nên AM = MC = 1/2 B C nên AMCK là hình thoi)

26 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath

Hiểu rõ về BTS chỉ có thể là Army phải không chị Bangtan?Chỉ cần nhìn avatar đoán ra chủ nick là con gái vì số fan girl nhiều hơn fan boy.

a: Ta có: D và E đối xứng nhau qua AB

nên DE vuông góc với AB tại trung điểm của DE

=>M là trung điểm của DE

Ta có: D và F đối xứng nhau qua AC

nên DF vuông góc với AC tại trung điểm của DF

=>N là trung điểm của DF

Xét tứ giác BMDN có 

\(\widehat{BMD}=\widehat{BND}=\widehat{NBM}=90^0\)

Do đó: BMDN là hình chữ nhật

b: Xét ΔABC có

D là trung điểm của AC
DN//AB

Do đó: N là trung điểm của BC

Xét tứ giác BDCF có 

N là trung điểm của BC

N là trung điểm của DF

Do đó:BDCF là hình bình hành

mà DB=DC

nên BDCF là hình thoi