K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2016

\(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\Rightarrow0< a,b,c< 1\)

\(\Rightarrow\hept{\begin{cases}ab>0\\ac>0\\bc>0\end{cases}}\)

\(\Rightarrow ab+bc+ca>0\)

Lại có :

\(\left(a+b+c\right)^2=1^2\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\)

Mà \(ab+bc+ca>0\)

\(\Rightarrow2\left(ab+bc+ca\right)>0\)

\(\Rightarrow\left[a^2+b^2+c^2+2\left(ab+bc+ca\right)\right]-2\left(ab+bc+ca\right)=1-2\left(ab+bc+ca\right)\)

\(\Rightarrow a^2+b^2+c^2=1-2\left(ab+bc+ca\right)< 1-0=1\)

Vậy ...

18 tháng 2 2016

bạn lớp 7 mà học kém quá nhỉ

dễ ot

b,c=1

14 tháng 3 2020

Theo Cauchy-Schwarz dạng Engel: \(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{1}{2}\)

14 tháng 3 2020

DO a,b,c đối xứng , giả sử \(a\ge b\ge c\Rightarrow\hept{\begin{cases}a^2\ge b^2\ge c^2\\\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\end{cases}}\)

áp dụng bất đẳng thức trê-bư-sép ta có

\(a^2.\frac{a}{b+c}+b^2.\frac{b}{a+c}+c^2.\frac{c}{a+b}\ge\frac{a^2+b^2+c^2}{3}\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=\frac{1}{3}.\frac{3}{2}=\frac{1}{2}\)

vậy \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{2}\)dấu bằng xảy ra khi\(a=b=c=\frac{1}{\sqrt{3}}\)

16 tháng 12 2015

\(4b^2c^2-\left(b^2+c^2-a^2\right)=\left(2bc-b^2-c^2+a^2\right)\left(2bc+b^2+c^2-a^2\right)=\left(a^2-\left(b-c\right)^2\right)\left(\left(b+c\right)^2-a^2\right)\)

\(=\left(a-b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(b+c+a\right)>0\)(dpcm)

Vì a-b+c >0

 a+b-c>0

b+c-a> 0

a+b+c>0