Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)
\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ac< ba+bc\)
\(\Leftrightarrow ac< bc\)
\(\Leftrightarrow a< b\)(đúng)
a)Áp dụng
\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)
Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)
Từ (1) và (2)=> đpcm
Vì \(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có
\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)
a: ad=bc
=>a/b=c/d=k
=>a=bk; c=dk
b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)
a/b=bk/b=k
=>(a+c)/(b+d)=a/b
c: ad=bc
nên a/c=b/d
d: \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)
\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)
=>\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)
Lớp 8:Thì cái này hiển đúng: \(\dfrac{a}{a+k}>\dfrac{a}{a+p}\forall a,p>k>0\)
\(A>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)
Vậy: \(A>1\)
Tương tự:
\(A< \dfrac{a+d}{a+b+c+d}+\dfrac{b+a}{a+b+c+d}+\dfrac{c+b}{a+b+c+d}+\dfrac{d+c}{a+b+c+d}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
Vậy: A<2
Kết luận: \(1< A< 2\)
p/s: bài giải này chỉ đúng với lớp 8; nếu lớp 6 bài giải này chưa đúng.
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
\(\dfrac{a+b}{a+b+c}\)>\(\dfrac{a+b}{a+b+c+d}\)
\(\dfrac{b+c}{b+c+d}\)>\(\dfrac{b+c}{b+c+d+a}\)
\(\dfrac{c+d}{c+d+a}\)>\(\dfrac{c+d}{c+d+a+b}\)
\(\dfrac{d+a}{d+a+b}\)>\(\dfrac{d+a}{d+a+b+c}\)
cộng từng vế của bất đẳng thức lại với nhau ta được
\(\dfrac{a+b}{a+b+c}\)+\(\dfrac{b+c}{b+c+d}\)+\(\dfrac{c+d}{c+d+a}\)+\(\dfrac{d+a}{d+a+b}\)>\(\dfrac{a+b}{a+b+c+d}\)+\(\dfrac{b+c}{b+c+d+a}\)+\(\dfrac{c+d}{c+d+a+b}\)+\(\dfrac{d+a}{d+a+b+c}\)=\(\dfrac{2.\left(a+b+c+d\right)}{a+b+c+d}\)=2
Ta có :
\(\dfrac{a}{b}< \dfrac{c}{d}\)
\(\Rightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\)
\(\Rightarrow\dfrac{ad-bc}{bd}< 0\)
Mà \(bd>0\) (do b,d dương)
\(\Rightarrow\left\{{}\begin{matrix}ad-bc< 0\\bd>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}ad< bc\\bd>0\end{matrix}\right.\)
\(\Rightarrow\dfrac{bd}{ad}>\dfrac{bd}{bc}\)
\(\Rightarrow\dfrac{b}{a}>\dfrac{d}{c}\)
\(\rightarrowđpcm\)
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)
\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)
\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)
\(\Leftrightarrow ad=bc\)
hay \(\dfrac{a}{c}=\dfrac{b}{d}\)