K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)

\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)

\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)

\(\Leftrightarrow ad=bc\)

hay \(\dfrac{a}{c}=\dfrac{b}{d}\)

27 tháng 3 2018

\(\dfrac{a}{b}< \dfrac{a+c}{b+c}\)

\(\Leftrightarrow a\left(b+c\right)< b\left(a+c\right)\)

\(\Leftrightarrow ab+ac< ba+bc\)

\(\Leftrightarrow ac< bc\)

\(\Leftrightarrow a< b\)(đúng)

a)Áp dụng

\(\Rightarrow\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=2\left(1\right)\)

Lại có:\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}>\dfrac{a}{a+b+c}+\dfrac{b}{b+c+a}+\dfrac{c}{c+a+b}=1\left(2\right)\)

Từ (1) và (2)=> đpcm

27 tháng 3 2018

\(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow ac< bc\Rightarrow ac+ab< bc+ab\Rightarrow a\left(b+c\right)< b\left(a+c\right)\Rightarrow\dfrac{a\left(b+c\right)}{b\left(b+c\right)}< \dfrac{b\left(a+c\right)}{b\left(b+c\right)}\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+c}\)a) ta có

\(\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{a+c}{a+b+c}+\dfrac{a+b}{a+b+c}+\dfrac{b+c}{a+b+c}\)\(\Leftrightarrow\dfrac{a+b+c}{a+b+c}< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< \dfrac{2\left(a+b+c\right)}{a+b+c}\)

\(\Leftrightarrow1< \dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}< 2\)

13 tháng 4 2019

Bạn nhân chéo rồi PTNT là ok

16 tháng 11 2022

a: ad=bc

=>a/b=c/d=k

=>a=bk; c=dk

b: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=k\)

a/b=bk/b=k

=>(a+c)/(b+d)=a/b

c: ad=bc

nên a/c=b/d

d: \(\dfrac{a+b}{b}=\dfrac{bk+b}{b}=k+1\)

\(\dfrac{c+d}{d}=\dfrac{dk+d}{d}=k+1\)

=>\(\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

15 tháng 3 2017

Lớp 8:Thì cái này hiển đúng: \(\dfrac{a}{a+k}>\dfrac{a}{a+p}\forall a,p>k>0\)

\(A>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)

Vậy: \(A>1\)

Tương tự:

\(A< \dfrac{a+d}{a+b+c+d}+\dfrac{b+a}{a+b+c+d}+\dfrac{c+b}{a+b+c+d}+\dfrac{d+c}{a+b+c+d}=\dfrac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

Vậy: A<2

Kết luận: \(1< A< 2\)

p/s: bài giải này chỉ đúng với lớp 8; nếu lớp 6 bài giải này chưa đúng.

5 tháng 8 2015

a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )

                                                     =(a + d )- (b +c )2                             (1)

              (a - b + c - d)(a + b - c - d)=(a - d)- (b - c)2                                  (2)

Từ (1) và (2)  => a+ 2ad + d- b- 2bc - c2=a- 2ad + d- b+ 2bc - c2

4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\)  (đpcm)

 

11 tháng 5 2017

\(\dfrac{a+b}{a+b+c}\)>\(\dfrac{a+b}{a+b+c+d}\)

\(\dfrac{b+c}{b+c+d}\)>\(\dfrac{b+c}{b+c+d+a}\)

\(\dfrac{c+d}{c+d+a}\)>\(\dfrac{c+d}{c+d+a+b}\)

\(\dfrac{d+a}{d+a+b}\)>\(\dfrac{d+a}{d+a+b+c}\)

cộng từng vế của bất đẳng thức lại với nhau ta được

\(\dfrac{a+b}{a+b+c}\)+\(\dfrac{b+c}{b+c+d}\)+\(\dfrac{c+d}{c+d+a}\)+\(\dfrac{d+a}{d+a+b}\)>\(\dfrac{a+b}{a+b+c+d}\)+\(\dfrac{b+c}{b+c+d+a}\)+\(\dfrac{c+d}{c+d+a+b}\)+\(\dfrac{d+a}{d+a+b+c}\)=\(\dfrac{2.\left(a+b+c+d\right)}{a+b+c+d}\)=2

11 tháng 5 2017

hình như sai đề

19 tháng 3 2018

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{b}-\dfrac{c}{d}< 0\)

\(\Rightarrow\dfrac{ad-bc}{bd}< 0\)

Mà \(bd>0\) (do b,d dương)

\(\Rightarrow\left\{{}\begin{matrix}ad-bc< 0\\bd>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}ad< bc\\bd>0\end{matrix}\right.\)

\(\Rightarrow\dfrac{bd}{ad}>\dfrac{bd}{bc}\)

\(\Rightarrow\dfrac{b}{a}>\dfrac{d}{c}\)

\(\rightarrowđpcm\)

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)

Do đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)