Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/3 + 2/3² + 3/3³ + 4/3^4 + ... + 100/3^100
=> 3A= 1 + 2/3 + 3/3² + 4/3³ + .... + 100/3^99
=> 3A-A = 1 + (2/3 - 1/3) + (3/3² - 2/3²) +...+ (100/3^99 - 99/3^99) - 100/3^100
=> 2A= 1+ 1/3 + 1/3² + 1/3³ +...+ 1/3^99 - 100/3^100
Đặt B = 1/3 + 1/3² + 1/3³ +...+ 1/3^99
=> 3B = 1 + 1/3 + 1/3² + 1/3³ +...+ 1/3^98
=> 2B = 1 - 1/3^99 => B = (1 - 1/3^99)/2
Thay vào 2A => 2A= 1+ 1/2 - 1/(2x3^99) - 100/3^100 < 1+ 1/2 = 3/2
=> A < 3/4
Vậy..........................
A<1/1x2+1/2x3+1/3x4+...+1/99x100
A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A<1/1-1/100
A<99/100<1
b. Câu hỏi của Phùng Tuệ Minh - Toán lớp 7 - Học toán với OnlineMath
a; đặt tổng trên là A
Suy ra 2A-A =1-1/256
Suy ra A=1-1/256 hay A<1
b;đặt tổng đó là B. Ta có:
4B = 1-1/3+1/3^2- 1/3^3+....+1/3^98-1/3^99-100/3^100
suy ra 4B<1-1/3+....+1/3^99 = C (1)
Mà 4C=C+3C=3-1/3^99 nên :
suy ra 4C<3 hay b<3/4 (2)
từ (1)và(2), suy ra 4B <C<3/4 hay B< 3/16
b. Câu hỏi của Phùng Tuệ Minh - Toán lớp 7 - Học toán với OnlineMath
1/1^2 + 1/2^2 + 1/32 + 1/42 + ... + 1/1002 < 1 + 1/4 + 1/2x3 + 1/3x4 + .. + 1/99x100
< 1 + 1/4 + 1/2 - 1/3 + 1/3 - 1/4 + .. + 1/99 - 1/100
< 1 + 1/4 + 1/2 - 1/100
< 7/4 - 1/100 < 7/4
\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)
\(=1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1+\frac{1}{4}+\frac{1}{2}-\frac{1}{100}\)
\(=\frac{7}{4}-\frac{1}{100}< \frac{7}{4}\)