K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

a)\(=x^3.\left(2+\frac{3}{5}x^2\right)\)(đặt nhân tử chung)

b)\(=\left(7a^2-5a\right).\left(a+5\right)\)\(=a\left(7a-5\right).\left(a+5\right)\)

c)\(=6ab\left(2a-3b+4ab\right)\)

d)\(=a.\left(a-b\right)-\left(7a-7b\right)\)

   \(=a.\left(a-b\right)-7\left(a-b\right)\)

   \(=\left(a-7\right).\left(a-b\right)\)

e) \(=\left(\frac{1}{2}a^2b+\frac{1}{4}ab\right)+\frac{1}{2}\left(a+\frac{1}{2}\right)\)

     \(=\frac{1}{2}ab\left(a+\frac{1}{2}\right)+\frac{1}{2}\left(a+\frac{1}{2}\right)\)

      \(=\left(\frac{1}{2}ab+\frac{1}{2}\right).\left(a+\frac{1}{2}\right)\)

Có gì không đúng bạn thông cảm cho mình nhớ =))

8 tháng 8 2016

Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung

\(a^3c+a^2bc-a^2b^2-abc^2\)

21 tháng 3 2020

1)\(4\left(a^4-1\right)x=5\left(a-1\right)\)

<=>x=\(\frac{5\left(a-1\right)}{a^4-1}\)

<=>x=\(\frac{5\left(a-1\right)}{\left(a-1\right)\left(a+1\right)\left(a^2+1\right)}=\frac{5}{\left(a+1\right)\left(a^2+1\right)}\)

Tương tự ta tính được y=\(\frac{4a^6+4}{5a^4-5a^2+5}\)

Suy ra x.y=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\cdot\left(a^6+1\right)}{5\left(a^4-a^2+1\right)}\)=\(\frac{5}{\left(a+1\right)\left(a^2+1\right)}.\frac{4\left(a^2+1\right)\left(a^4-a^2+1\right)}{5\left(a^4-a^2+1\right)}\)

=\(\frac{5}{a+1}\)

Tương tự với x:y

21 tháng 3 2020

\(A=\frac{4.6}{4.2}:\left(\frac{8.10}{6.8}.\frac{12.14}{10.12}.\frac{16.18}{14.16}...\frac{54.56}{54.53}\right)=\frac{6}{2}:\frac{56}{6}=\)

7 tháng 3 2018

Tịnh tách các bài ra nhé.

15 tháng 9 2018

a) = \(12a^2b\left(a^2-b^2\right)\)

\(12a^4b-12a^2b^3\)

b)nhân ra :

\(2x^4-16x^3+4x^2-3x^3+24x^2-6x+5x^2-40x+10\)

\(2x^4-19x^3+33x^2-46x+10\)

Tìm x:

a) \(\frac{1}{4}x^2-\left(\frac{1}{4}x^2-2x\right)=-14\)

\(\frac{1}{4}x^2-\frac{1}{4}x^2+2x=-14\)

=\(2x=-14=>x=-7\)

b) \(x^3+27-x\left(x^2-1\right)=27\)

\(x^3+27-x^3+x=27\)

\(27+x=27=>x=0\)

31 tháng 8 2019

đề bài là : dùng hằng đẳng thức để khai triển và thu gọn các biểu thức

31 tháng 8 2019

ok bạn

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).Bài 2: Cho các số thực dương a,b,c,d. Chứng minh...
Đọc tiếp

Giúp mình với! Mình đang cần gấp. Các bạn làm được bài nào thì giúp đỡ mình nhé! Cảm ơn!

Bài 1: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{a^2}{\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}}+\frac{b^2}{\sqrt{\left(2b^2+c^2\right)\left(2b^2+a^2\right)}}+\frac{c^2}{\sqrt{\left(2c^2+a^2\right)\left(2c^2+b^2\right)}}\le1\).

Bài 2: Cho các số thực dương a,b,c,d. Chứng minh rằng:

\(\frac{a-b}{a+2b+c}+\frac{b-c}{b+2c+d}+\frac{c-d}{c+2d+a}+\frac{d-a}{d+2a+b}\ge0\).

Bài 3: Cho các số thực dương a,b,c. Chứng minh rằng:

\(\frac{\sqrt{b+c}}{a}+\frac{\sqrt{c+a}}{b}+\frac{\sqrt{a+b}}{c}\ge\frac{4\left(a+b+c\right)}{\sqrt{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\).

Bài 4:Cho a,b,c>0, a+b+c=3. Chứng minh rằng: 

a)\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\ge1\).

b)\(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}\ge\frac{3}{2}\).

c)\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}\ge3\).

Bài 5: Cho a,b,c >0. Chứng minh rằng:

\(\frac{2a^2+ab}{\left(b+c+\sqrt{ca}\right)^2}+\frac{2b^2+bc}{\left(c+a+\sqrt{ab}\right)^2}+\frac{2c^2+ca}{\left(a+b+\sqrt{bc}\right)^2}\ge1\).

8
21 tháng 10 2019

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

21 tháng 10 2019

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

28 tháng 2 2020

Bài 1:

\(a, \dfrac{1}{2}x(2-x)=x-\dfrac{1}{2}x^2\)

\(b, \dfrac{x-5}{5-x}\)\(=-\dfrac{x-5}{x-5}\)\(=-1\)

Bài 2:

\(a, x+y-x^2+y^2=(x+y)-(x^2-y^2)=(x+y)-(x-y)(x+y)\)

\(=(x+y)(1-x+y)\)

\(b, x(x-3)+3x-1=0 \)

\(⇔x^2-3x+3x-1=0 \)

\(⇔x^2-1=0 \)

\(⇔(x-1)(x+1)=0 \)

\(⇔\left[\begin{array}{} x-1=0\\ x+1=0 \end{array}\right.\)

\(⇔\left[\begin{array}{} x=1\\ x=-1 \end{array}\right.\)

Bài 3:

\(a,A=\dfrac{x(x+2)-x(x-2)+8}{x^2-4}:\dfrac{4}{x-2}\)

\(A=\dfrac{4x+8}{(x-2)(x+2)}.\dfrac{x-2}{4}\)

\(A=\dfrac{4(x+2)}{(x-2)(x+2)}.\dfrac{x-2}{4}\)

\(A=1\)

\(b, B=(1-\dfrac{a+b}{a-b})(1-\dfrac{2b}{a+b})\)

\(B=\dfrac{-2b}{a-b}.\dfrac{a-b}{a+b}\)

\(B=\dfrac{-2b}{a+b}\)

Bài 4:

\(C=(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)\)

\(C=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)\)

\(C=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)\)

\(C=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)\)

\(C=(2^{16}-1)(2^{16}+1)(2^{32}+1)\)

\(C=(2^{32}-1)(2^{32}+1)=2^{64}-1\)

28 tháng 2 2020

Thanks bạn nha!!!!ok

10 tháng 8 2016

\(a,3x-6y=3\left(x-2y\right)\)

\(b,\frac{2}{5}x^2+5x^3+x^2y=x^2\left(\frac{2}{5}+5x+y\right)\)