K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2022

a:

Xét (O) có

MA,MB là các tiếp tuyến

nên MA=MB

mà OA=OB

nên OM là trung trực của AB

Ta có: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI là đường cao

Xét tứ giác MHIK có góc MHK=góc MIK=90 độ

nen MHIK là tứ giác nội tiếp

b: Xét ΔMEA và ΔMAI có

góc MEA=góc MAI

góc EMA chung

Do đó: ΔMEA đồng dạng với ΔMAI

=>ME/MA=MA/MI

=>MA^2=MI*ME

a: Xét (O) có

AM là tiếp tuyến

BM là tiếp tuyến

Do đó: MA=MB

mà OA=OB

nên OM là đường trung trực của AB

=>OM\(\perp\)AB

Xét tứ giác MHIK có \(\widehat{MHK}=\widehat{MIK}=90^0\)

nên MHIK là tứ giác nội tiếp

b: Xét ΔMAE và ΔMIA có

góc MAE=góc MIA

góc AME chung

Do đó: ΔMAE\(\sim\)ΔMIA

Suy ra: MA/MI=ME/MA

hay \(MA^2=ME\cdot MI\)

17 tháng 4 2018

a, HS tự chứng minh

b, OM = R 2

c, MC. MD = M A 2  = MH.MO

=> MC. MD = MH.MO

=> DMHC ~ DMDO (c.g.c)

=>  M H C ^ = M D O ^ => Tứ giác CHOD nội tiếp

Chứng minh được:  M H C ^ = O H D ^

=>  C H B ^ = B H D ^ (cùng phụ hai góc bằng nhau)

30 tháng 3 2018

Bài này dễ mà bạn ^_^

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc vớiGọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại KXác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo RBài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ...
Đọc tiếp

Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất

1

Bài 4:

a: 

Xét (O) có

ΔCED nội tiếp

CD là đường kính

=>ΔCED vuông tại E

ΔOEF cân tại O

mà OI là đường cao

nên I là trung điểm của EF

Xét tứ giác CEMF có

I là trung điểm chung của CM và EF

CM vuông góc EF

=>CEMF là hình thoi

=>CE//MF

=<MF vuông góc ED(1)

Xét (O') có

ΔMPD nội tiêp

MD là đường kính

=>ΔMPD vuông tại P

=>MP vuông góc ED(2)

Từ (1), (2) suy ra F,M,P thẳng hàng

b: góc IPO'=góc IPM+góc O'PM

=góc IEM+góc O'MP

=góc IEM+góc FMI=90 độ

=>IP là tiếp tuyến của (O')

10 tháng 3 2017

Đường tròn c: Đường tròn qua D_1 với tâm O Đoạn thẳng f: Đoạn thẳng [C, D] Đoạn thẳng h: Đoạn thẳng [M, C] Đoạn thẳng k: Đoạn thẳng [M, A] Đoạn thẳng l: Đoạn thẳng [M, B] Đoạn thẳng n: Đoạn thẳng [B, E] Đoạn thẳng p: Đoạn thẳng [O, A] Đoạn thẳng q: Đoạn thẳng [O, B] Đoạn thẳng r: Đoạn thẳng [M, O] Đoạn thẳng s: Đoạn thẳng [A, B] Đoạn thẳng t: Đoạn thẳng [H, C] Đoạn thẳng a: Đoạn thẳng [D, H] O = (1.6, 4.42) O = (1.6, 4.42) O = (1.6, 4.42) Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm C: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm A: Giao điểm của c, j Điểm A: Giao điểm của c, j Điểm A: Giao điểm của c, j Điểm B: Giao điểm của c, i Điểm B: Giao điểm của c, i Điểm B: Giao điểm của c, i Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm E: Giao điểm của c, m Điểm E: Giao điểm của c, m Điểm E: Giao điểm của c, m Điểm H: Giao điểm của r, s Điểm H: Giao điểm của r, s Điểm H: Giao điểm của r, s

a. Do I là trung điểm CD nên \(OI⊥CD\Rightarrow\widehat{OIM}=90^o.\)

Ta thấy \(\widehat{OAM}=\widehat{OBM}=\widehat{OIM}=90^o\) nên A, B ,M , O, I cùng thuộc đường tròn đường kính MO.

b. Xét đường tròn (O) có \(\widehat{AEB}=\frac{\widehat{AOB}}{2}\) (1)

Xét đường tròn đường kính MO có MA = MB nên \(sđ\widebat{AM}=sđ\widebat{MB}\).

Nên  \(\widehat{AOB}=\frac{sđ\widebat{AMB}}{2}=sđ\widebat{AM}=sđ\widebat{MB}\)

Lại có \(\widehat{MIB}=\frac{sđ\widebat{MB}}{2}=\frac{\widehat{AOB}}{2}\), vậy nên \(\widehat{MIB}=\widehat{AEI.}\)

Lại có \(\widehat{MIB}=\widehat{EID}\) (đối đỉnh) nên \(\widehat{AEI}=\widehat{EID}\)

Chúng ở vị trí so le trong nên AE // CD.

c. Nếu \(MA⊥MB\)thì tứ giác OAMB là hình chữ nhật, lại có OA = OB nên nó là hình vuông. Khi đó \(OM=\sqrt{2OB^2}=R\sqrt{2}\)

Vậy để \(MA⊥MB\) thì M thuộc tia đối tia CD mà \(OM=R\sqrt{2}\)

d. Ta thấy ngay \(\Delta MBD\sim\Delta MCB\left(g-g\right)\Rightarrow\frac{MB}{MC}=\frac{MD}{MB}\Rightarrow MB^2=MC.MD\)

Xét tam giác vuông MBO có BH là đường cao nên \(MB^2=MH.MO\)

Vậy thì \(MH.MO=MC.MD\Rightarrow\frac{MH}{MD}=\frac{MC}{MO}\)

Suy ra \(\Delta MCH\sim\Delta MDO\left(c-g-c\right)\)

Vậy thì \(\widehat{MHC}=\widehat{MDO}\left(1\right)\) hay tứ giác HCDO nội tiếp. Vậy \(\widehat{OCD}=\widehat{OHD}\) (2) (Cùng chắn cung OD)

Lại có \(\widehat{MDO}=\widehat{OCD}\) (OC = OD = R) nên \(\widehat{MHC}=\widehat{OHD}\)

Vậy thì \(\widehat{CHB}=\widehat{DHB}\) (Cùng phụ với góc MHC và OHD)

Tóm lại HB là phân giác góc CHD(đpcm).

9 tháng 3 2017

chưa học và khó quá nên ít người trả lời