Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Vì \(\overrightarrow{BA}\uparrow\uparrow\overrightarrow{CD}\) và \(BA=\frac{1}{3}CD\Rightarrow \overrightarrow{BA}=\frac{1}{3}\overrightarrow{CD}\)
Để $B,M,D$ thẳng hàng \(\Leftrightarrow \exists k\in\mathbb{R}|\overrightarrow{BM}=k\overrightarrow{MD}\)
\(\Leftrightarrow \overrightarrow{BA}+\overrightarrow{AM}=k\overrightarrow{MD}\)
\(\Leftrightarrow \frac{1}{3}\overrightarrow{CD}+x\overrightarrow{MC}=k\overrightarrow{MD}\)
\(\Leftrightarrow \frac{1}{3}(\overrightarrow{MC}+\overrightarrow{CD})+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)
\(\Leftrightarrow \frac{1}{3}\overrightarrow{MD}+(x-\frac{1}{3})\overrightarrow{MC}=k\overrightarrow{MD}\)
\(\Leftrightarrow (x-\frac{1}{3})\overrightarrow{MC}=(k-\frac{1}{3})\overrightarrow{MD}\)
Vì \(\overrightarrow{MC}; \overrightarrow{MD}\) không phải 2 vecto cùng phương nên điều trên chỉ xảy ra khi \(x-\frac{1}{3}=k-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)
Bài 2:
Lấy điểm $I(a,b)$ sao cho \(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)
\(\Leftrightarrow (1-a, 1-b)-2(4-a, 3-b)+3(2-a, -2-b)=(0,0)\)
\(\Leftrightarrow (-1-2a,-11-2b)=(0,0)\Rightarrow a=-\frac{1}{2}; b=\frac{-11}{2}\)
Vậy \(I(-\frac{1}{2}; -\frac{11}{2})\)
Ta có:
\(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|=|\overrightarrow{MI}+\overrightarrow{IA}-2(\overrightarrow{MI}+\overrightarrow{IB})+3(\overrightarrow{MI}+\overrightarrow{IC})|\)
\(|2\overrightarrow{MI}+(\overrightarrow{IA}-2\overrightarrow{IB}+3\overrightarrow{IC})|=2|\overrightarrow{MI}|\)
Để \(|\overrightarrow{MA}-2\overrightarrow{MB}+3\overrightarrow{MC}|\) min thì \(|\overrightarrow{MI}|\) min. Điều này xảy ra khi $M$ là hình chiếu của $I$ trên $Ox$
Do đó \(M=(-\frac{1}{2};0)\)
\(\left\{{}\begin{matrix}x+2y-2=0\\2x+y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(-\frac{4}{3};\frac{5}{3}\right)\)
Gọi \(\left\{{}\begin{matrix}B\left(2-2b;b\right)\\C\left(c;-2c-1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MB}=\left(1-2b;b-2\right)\\\overrightarrow{MC}=\left(c-1;-2c-3\right)\end{matrix}\right.\)
Do \(M\in BC\Rightarrow\frac{1-2b}{c-1}=\frac{b-2}{-2c-3}\) \(\Leftrightarrow3bc+7b-5=0\) \(\Rightarrow c=\frac{-7b+5}{3b}\) (1)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(\frac{10}{3}-2b;b-\frac{5}{3}\right)\\\overrightarrow{AC}=\left(c+\frac{4}{3};-2c-\frac{8}{3}\right)\end{matrix}\right.\) mà AB=AC
\(\Rightarrow\left(\frac{10}{3}-2b\right)^2+\left(b-\frac{5}{3}\right)^2=\left(c+\frac{4}{3}\right)^2+\left(2c+\frac{8}{3}\right)^2\)
\(\Leftrightarrow3b^2-10b+3=3c^2+8c\) (2)
Thế (1) vào (2) ta được:
\(9b^4-30b^3+16b^2+30b-25=0\)
\(\Leftrightarrow\left(b-1\right)\left(b+1\right)\left(9b^2-30b+25\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}b=1\\b=-1\\b=\frac{5}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=-\frac{2}{3}\\c=-4\\c=-\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}C\left(-\frac{2}{3};\frac{1}{3}\right)\\C\left(-4;7\right)\\C\left(-\frac{4}{3};\frac{5}{3}\right)\equiv A\left(l\right)\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}A\left(-\frac{4}{3};\frac{5}{3}\right)\\C\left(-\frac{2}{3};\frac{1}{3}\right)\end{matrix}\right.\) gọi \(D\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AD}=\left(x+\frac{4}{3};y-\frac{5}{3}\right)\\\overrightarrow{CD}=\left(x+\frac{2}{3};y-\frac{1}{3}\right)\end{matrix}\right.\)
\(\Rightarrow P=\overrightarrow{DA}.\overrightarrow{DC}=\overrightarrow{AD}.\overrightarrow{CD}=\left(x+\frac{4}{3}\right)\left(x+\frac{2}{3}\right)+\left(y-\frac{5}{3}\right)\left(y-\frac{1}{3}\right)\)
\(P=x^2+2x+\frac{8}{9}+y^2-2y+\frac{5}{9}\)
\(P=\left(x+1\right)^2+\left(y-1\right)^2-\frac{5}{9}\ge-\frac{5}{9}\)
\(\Rightarrow P_{min}=-\frac{5}{9}\) khi \(\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\) hay \(D\left(-1;1\right)\)
TH2: bạn tự giải, thật ra D luôn là trung điểm AC
a. Vì \(2-2.5+3=-5< 0\) và \(-4-2.5+3=-11< 0\) nên A, B cùng phía với đường thẳng \(\Delta\).
Gọi \(A'\left(x;y\right)\) là điểm đối xứng với A qua \(\Delta\), khi đó (x;y) là nghiệm của hệ :
\(\begin{cases}\frac{x-2}{1}=\frac{y-5}{-2}\\\frac{x-2}{1}-2.\frac{y+5}{2}+3=0\end{cases}\)
Giải hệ ta được : \(\left(x;y\right)=\left(4;1\right)\) suy ra \(\overrightarrow{A'B}=\left(-8;4\right)=4\left(-2;1\right)\)
Do đó đường thẳng A'B có phương trình tham số \(\begin{cases}x=4-2t\\y=1+t\end{cases}\)\(;t\in R\)
Suy ra điểm C cần tìm có tọa độ là nghiệm của hệ :
\(\begin{cases}x=4-2t\\y=1+t\\x-2y+3=0\end{cases}\)
Giải hệ ta có điểm C \(\left(\frac{3}{2};\frac{9}{4}\right)\)
b. Gọi I là trung điểm của AB. Khi đó\(I\left(-1;5\right)\) và \(\overrightarrow{CA}+\overrightarrow{CB}=2\overrightarrow{CI}\), với mọi C.
Vậy \(C\in\Delta\) : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|\) bé nhất \(\Leftrightarrow\left|CI\right|\) bé nhất \(\Leftrightarrow C\) là hình chiếu của I trên \(\Delta\)
Nếu \(C\left(x;y\right)\) là hình chiếu của I trên \(\Delta\) thì (x;y) là nghiệm của hệ :
\(\begin{cases}\frac{x+1}{1}=\frac{y-5}{-2}\\x-2y+3=0\end{cases}\)
Giải hệ thu được : \(\left(x;y\right)=\left(\frac{3}{5};\frac{9}{5}\right)\) vậy \(C\left(\frac{3}{5};\frac{9}{5}\right)\)
Đường thẳng \(\Delta\) có vecto pháp tuyến \(\overrightarrow{n}=\left(1;-2\right)\) nên nhận \(\overrightarrow{u}=\left(2;1\right)\) làm vecto chỉ phương.
Từ đó để ý rằng đường thẳng \(\Delta\) cắt Ox tại \(M\left(-3;0\right)\) nên \(\Delta\) có phương trình dạng tham số :
\(\begin{cases}x=-3+2t\\y=t\end{cases}\) \(\left(t\in R\right)\)
a. Xét \(C\left(-3+2t;t\right)\in\Delta\), khi đó :
\(CA+CB=\sqrt{\left(5-2t\right)^2+\left(5-t\right)^2}+\sqrt{\left(2t+1\right)^2+\left(t-5\right)^2}\)
\(=\sqrt{5t^2-30t+50}+\sqrt{5t^2-6t+26}\)
\(=\sqrt{\left(\sqrt{5}t-3\sqrt{5}\right)^2}+\sqrt{\left(\frac{3}{\sqrt{5}}-\sqrt{5}t\right)^2+\frac{121}{5}}\)
\(\ge\sqrt{\left(\frac{3}{\sqrt{5}}-3\sqrt{5}\right)^2+\left(\sqrt{5}+\frac{11}{\sqrt{5}}\right)^2}=4\sqrt{5}\)
Dấu đẳng thức xảy ra khi và chỉ khi
\(\frac{\sqrt{5}t-3\sqrt{5}}{\frac{3}{\sqrt{5}}-\sqrt{5}t}=\frac{5}{11}\Leftrightarrow t=\frac{9}{4}\)
Từ đó tìm được : \(C\left(\frac{3}{2};\frac{9}{4}\right)\)
b. Với \(C\left(=3+2t;t\right)\in\Delta\) ta có \(\overrightarrow{CA}=\left(5-2t;5-t\right)\) và \(\overrightarrow{CB}=\left(-1-2t;5-t\right)\)
Suy ra : \(\overrightarrow{CA}+\overrightarrow{CB}=\left(4-4t;10-2t\right)\) và do đó :
\(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\sqrt{\left(4-4t\right)^2+\left(10-2t\right)^2}=\sqrt{\left(2\sqrt{5}t-\frac{18}{\sqrt{5}}\right)^2+\frac{256}{5}}\ge\frac{16}{\sqrt{5}}\)
Dấu đẳng thức xảy ra khi và chỉ khi \(t=\frac{9}{5}\)
Do đó điểm C cần tìm là \(\left(\frac{3}{5};\frac{9}{5}\right)\)
Hok nhanh phết, chưa j đã đến phần toạ độ vecto r
1/ \(\overrightarrow{MB}=\left(x_B-x_M;y_B-y_M\right)=\left(2-x_M;3-y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}=\left(4-2x_M;6-2y_M\right)\)
\(\overrightarrow{3MC}=\left(3x_C-3x_M;3y_C-3y_M\right)=\left(-3-3x_M;6-3y_M\right)\)
\(\Rightarrow2\overrightarrow{MB}+3\overrightarrow{MC}=\left(4-2x_M-3-3x_M;6-2y_M+6-3y_M\right)=0\)
\(\Leftrightarrow\left(1-5x_M;12-5y_M\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-5x_M=0\\12-5y_M=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_M=\frac{1}{5}\\y_M=\frac{12}{5}\end{matrix}\right.\Rightarrow M\left(\frac{1}{5};\frac{12}{5}\right)\)
2/ \(\overrightarrow{m}=2\left(1;2\right)+3\left(3;4\right)=\left(2+9;4+12\right)=\left(11;16\right)\)
3/ \(\overrightarrow{AB}=\left(x_B-x_A;y_B-y_A\right)=\left(-5-3;4+2\right)=\left(-8;6\right)\)
\(\overrightarrow{AC}=\left(x_C-x_A;y_C-y_A\right)=\left(\frac{1}{3}-3;0+2\right)=\left(-\frac{8}{3};2\right)\)
\(\Rightarrow x=\frac{\overrightarrow{AB}}{\overrightarrow{AC}}=\frac{\left(-8;6\right)}{\left(-\frac{8}{3};2\right)}=3\)
Câu 4 tương tự
Câu 5 vt lại đề bài nhé bn, nghe nó vô lý sao á, m,n ở đâu ra vậy, cả A,B,C nx
Lời giải:
Gọi tọa độ điểm $M(a,b)$. Vì $M\in (\Delta)$ nên $3a+2b+1=0(*)$
Ta có:
\(\overrightarrow{AM}.\overrightarrow{BM}=(a-1)(a-3)+(b-2)(b-4)\)
\(=a^2-4a+3+b^2-6b+8=(a-2)^2+(b-3)^2-2\)
Áp dụng BĐT Bunhiacopxky kết hợp với $(*)$:
\([(a-2)^2+(b-3)^2](3^2+2^2)\geq [3(a-2)+2(b-3)]^2=(3a+2b-12)^2=(-1-12)^2\)
\(\Rightarrow (a-2)^2+(b-3)^2\geq 13\)
\(\Rightarrow \overrightarrow{AM}.\overrightarrow{BM}=(a-2)^2+(b-3)^2-2\geq 13-2=11\)
Giá trị min này đạt tại \(\frac{a-2}{3}=\frac{b-3}{2}\). Kết hợp với $(*)$ suy ra $a=-1; b=1$
Vậy $M(-1,1)$
Do \(M\in\Delta\) gọi tọa độ M có dạng \(M\left(m;\frac{-3m-1}{2}\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(m-1;\frac{-3m-5}{2}\right)\\\overrightarrow{BM}=\left(m-3;\frac{-3m-9}{2}\right)\end{matrix}\right.\)
Đặt \(P=\overrightarrow{AM}.\overrightarrow{BM}=\left(m-1\right)\left(m-3\right)+\left(\frac{-3m-5}{2}\right)\left(\frac{-3m-9}{2}\right)\)
\(=m^2-4m+3+\frac{9m^2+42m+45}{4}\)
\(=\frac{13m^2+26m+57}{2}=\frac{13\left(m+1\right)^2+44}{2}\ge22\)
Dấu "=" xảy ra khi \(m=-1\Leftrightarrow M\left(-1;1\right)\)