Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Không thể vì: \(\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}=1+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>1\)
b) Ta có: \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)
CM: \(\dfrac{a}{b}=\dfrac{a\cdot\left(b-m\right)}{b\cdot\left(b-m\right)}=\dfrac{ab-am}{b^2-bm}\left(1\right)\\ \dfrac{a-m}{b-m}=\dfrac{\left(a-m\right)\cdot b}{\left(b-m\right)\cdot b}=\dfrac{ab-am}{b^2-bm}\left(2\right)\)
Vì \(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow am< bm\Rightarrow ab-am>ab-bm\left(3\right)\)
Từ (1), (2), (3) ta có \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)
Vậy
\(B=\dfrac{17^{19}-1}{17^{20}-1}>\dfrac{17^{19}-1-16}{17^{20}-1-16}=\dfrac{17^{19}-17}{17^{20}-17}=\dfrac{17\cdot\left(17^{18}-1\right)}{17\cdot\left(17^{19}-1\right)}=\dfrac{17^{18}-1}{17^{19}-1}=A\)
Vậy B > A
\(B=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}\)có 11 số hạng
Ta có: \(\frac{1}{12}>\frac{1}{22}\)
\(\frac{1}{13}>\frac{1}{22}\)
.............
\(\frac{1}{22}=\frac{1}{22}\)
\(\Rightarrow B>\left(\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}\right)=\frac{11}{22}=\frac{1}{2}\)
bn tham khảo câu trả lời của mik ở bn hoàng thu trang nhabây h mik ghi lại dài dòng lắm
ta có
1/2<1/1.2
1/3<1/2.3
...
1/32<1/31.32
=>1/2+1/3+...+1/32<1/1.2+1/2.3+...+1/31.32
=>1/2+1/3+...+1/32<1/1-1/2+1/2-1/3+...+1/31-1/32
=>1/2+1/3+...+1/32<1/1-1/32=31/32
vì 31/32<1
=>tổng đó <1
ta lại có 1+1=2 mà 2 <3
=>tổng đó <3
vậy:-------(bn tự lm nha)
k cho mik vs nha
Gọi \(S=\frac{15}{15\cdot16}+\frac{15}{16\cdot17}+..+\frac{15}{19\cdot20}\)
\(\Leftrightarrow S=1-\frac{15}{16}+\frac{15}{16}-\frac{15}{17}+...+\frac{15}{19}-\frac{15}{20}\)
\(\Leftrightarrow S=1-\frac{15}{20}=\frac{1}{4}<\frac{1}{3}\)
Vậy S< \(\frac{1}{3}\)
--------------------Good luck------------------------
Xét \(\frac{1}{5}+\frac{1}{6}>\frac{1}{17}.6=\frac{6}{17}\)
và \(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+...+\frac{1}{17}>\frac{1}{17}+\frac{1}{17}+\frac{1}{17}+...+\frac{1}{17}=\frac{1}{17}.11=\frac{11}{17}\)
Do đó \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}>\frac{6}{17}+\frac{11}{17}=\frac{17}{17}=1\) (1)
Lại có \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}=\left(\frac{1}{5}+\frac{1}{6}+...+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{17}\right)\)
\(< \left(\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\right)+\left(\frac{1}{17}+\frac{1}{17}+...+\frac{1}{17}\right)=\frac{1}{10}.6+\frac{1}{17}.7=1\frac{1}{85}< 2\) (2)
Từ (1) và (2) suy ra điều phải chứng minh
\(S< \dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)