Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy $B$ có 11 số hạng. Mỗi số hạng phía trước $\frac{1}{22}$ đều lớn hơn $\frac{1}{22}$
Do đó $B> 11.\frac{1}{22}=\frac{1}{2}$ (đpcm)
Lần sau bạn lưu ý gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
1+2+3+4+5+6+7+8+9+10=55
11+12+13+14+15+16+17+18+19+20=155
1+2+3+4+5+6+7+8+9+10+11+12+13+14 +15+16+17+18+19+20+21+22+23+24+25+26+27+28+29+30-50-53=362
Ta có: 1/20<1/11
1/20<1/12
...
=> 1/20+1/20+..+1/20 < 1/11+1/12+...+1/20
=> 1/20.10<1/11.1/12+1/13+...+1/20
=> 1/2< 1/11+1/12+1/12+1/13+...+1/20
=> 1/2<S (đpcm)
k mik nhé các bạn. Thanks you nhé ^_<
a. ( 23 - 21) + ( 19 - 17) + ( 15 - 13) + ( 11 - 9) + ( 7 - 5) + ( 3 - 1)
= 2 + 2 + 2 + 2 + 2 + 2
= 2 x 6
= 12
b. ( 24 - 22 ) + ( 20 - 18 ) + ( 16 - 14 ) + ( 12 - 10) + ( 8 - 6 ) + ( 4 - 2)
= 2 + 2 + 2 + 2 + 2 + 2
= 2 x 6
= 12
\(1+2+3+4+5+6+7+8+9+10=55\)
\(11+12+13+14+15+16+17+18+19+20=155\)
ta có
1/2<1/1.2
1/3<1/2.3
...
1/32<1/31.32
=>1/2+1/3+...+1/32<1/1.2+1/2.3+...+1/31.32
=>1/2+1/3+...+1/32<1/1-1/2+1/2-1/3+...+1/31-1/32
=>1/2+1/3+...+1/32<1/1-1/32=31/32
vì 31/32<1
=>tổng đó <1
ta lại có 1+1=2 mà 2 <3
=>tổng đó <3
vậy:-------(bn tự lm nha)
k cho mik vs nha
bn tham khảo câu trả lời của mik ở bn hoàng thu trang nhabây h mik ghi lại dài dòng lắm
\(B=\frac{1}{12}+\frac{1}{13}+...+\frac{1}{22}\)có 11 số hạng
Ta có: \(\frac{1}{12}>\frac{1}{22}\)
\(\frac{1}{13}>\frac{1}{22}\)
.............
\(\frac{1}{22}=\frac{1}{22}\)
\(\Rightarrow B>\left(\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}\right)=\frac{11}{22}=\frac{1}{2}\)