Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai giải bải này cko mik với ạ mik cảm ơn
một thửa ruộng hình chữ nhật có chiều dài 54m, chiếu rộng bằng 2/3 chiều dài người ta cấy lúa trên thửa ruộng đó trung bình 100m vuông thu được 70kg thóc .Hỏi cả thửa ruộng thu được bao nhiêu tạ thóc
A B C H
a) Vì \(\Delta ABC\)là tam giác cân tại A
=> \(AB=AC\)và \(\widehat{B}=\widehat{C}\)
CM \(\Delta AHB=\Delta AHC\)
Xét \(\Delta AHB\)và \(\Delta AHC\)có :
\(AB=AC\left(cmt\right)\)
\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(HB=HC\)( vì M là trung điểm của BC )
=> \(\Delta AHB=\Delta AHC\left(c.g.c\right)\)
b) CM \(AH\perp BC\)
Vì \(\Delta AHB=\Delta AHC\)
=> \(\widehat{H_1}=\widehat{H_2}\)( hai góc tương ứng ) ( chỗ này mình vẽ thiếu, bạn tự bổ sung )
mà \(\widehat{H_1}+\widehat{H_2}=180^0\)( kề bù )
=> \(\widehat{H}_1=\widehat{H_2}=\frac{180^0}{2}=90^0\)
=> \(AH\perp BC\)( đpcm )
d) Nếu AB = 5cm , AH = 3cm . Tính BC
Vì \(\widehat{H_1}=90^0\)=> \(\Delta AHB\)là tam giác vuông
=> \(AB^2=AH^2+BC^2\)( Đ/lí Pytago )
Thay AB = 5cm, AH = 3cm ta có
\(5^2=3^2+BC^2\)
\(25=9+BC^2\)
=> \(BC^2=16\)
mà \(\sqrt{16}=4\)=> BC = 4cm
I A B C H E F
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △BAH và △CAH cùng vuông tại H
Có: AH là cạnh chung
AB = AC (cmt)
=> △BAH = △CAH (ch-cgv)
b, Vì △BAH = △CAH (cmt)
=> BH = CH (2 cạnh tương ứng)
mà BH + CH = BC
=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)
Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2 = 102 - 62 = 64
=> AH = 8 (cm)
c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)
Mà ∠HAC = ∠HAB (△CAH = △BAH)
=> ∠AHE = ∠HAB => ∠AHE = ∠HAE
=> △AHE cân tại E
d, Gọi { I } = EH ∩ BF
Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)
Mà ∠ABC = ∠ACB (cmt)
=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH
Mà EA = HE (△AHE cân tại E)
=> EA = BE
Xét △BAH có: E là trung điểm AB (EA = BE) => HE là đường trung tuyến
F là trung điểm AH => BF là đường trung tuyến
EH ∩ BF = { I }
=> I là trọng tâm của △BAH
\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)
Xét △BHI có: BI + HI > BH (bđt △)
\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)
\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)
\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)
c)\(\Delta\)BHA vuông tại A
=> ^ABH + ^BAH = 90 độ
mà ^BHE +^EHA = 90 độ
mà ^BAH = ^EHA ( vì \(\Delta\)AEH cân tại E)
=> ^ABH = ^BHE => \(\Delta\)BEH cân tại E
Gọi K là trung điểm BH => EK vuông BH
vì \(\Delta\)AEH cân => EF vuông AH
=> \(\Delta\)EKH = \(\Delta\)HFE => EF = KH = 1/2 BH = 1/4 BC
Ta có: \(\Delta\)EFH vuông tại F => EH > EF = 1/4 BC
\(\Delta\)BFH vuông tại H => BF > BH = 1/2 BC
=> BF + HE > 1/4 BC + 1/2 BC = 3/4 BC
a, xét tam giác ABE và tam giác ACD có:
AB=AC(gt); góc A chung; AD=AE(gt)
suy ra tam giác ABE= tam giác ACD(c.g.c)
suy ra BE=CD(đpcm)
b, do 2 tam giác ABE và ACD bằng nhau
suy ra góc ABE = góc ACD
mạt khác ABC=ACB(gt)
suy ra góc EBC= góc DCB
suy ra tam giác KBC cân tại K
tự kẻ hình nghen :33333
a) Xét tam giác AHB và tam giác AHC có
AH chung
AHC=AHB(=90 độ)
AB=AC(gt)
=> tam giác AHB= tam giac AHC(ch-cgv)
b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )
Xét tam giác AMH và tam giác ANH có
A1=A2(cmt)
AH chung
AMH=ANH(=90 độ)
=> tam giấcMH=tam giác ANH(ch-gnh)
=> AM=AN( hai cạnh tương ứng)
=> tam giác AMN cân A
c) vì tam giác AMN cân A
=> AMN=ANM=(180-MAN)/2
vì tam giác ABC cân A
=> ABC=ACB=(180-BAC)/2
=> AMN=ABC mà AMN đồng vị với ABC=> MN//BC
a) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH là cạnh chung
BH=CH(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
b) Ta có: ΔAHB=ΔAHC(cmt)
⇒\(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\frac{180^0}{2}=90^0\)
⇒AH⊥BC(đpcm)
c) Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-3^2=16\)
hay \(BH=\sqrt{16}=4cm\)
Ta có: \(BC=2\cdot BH\)(H là trung điểm của BC)
hay \(BC=2\cdot4cm=8cm\)
Vậy: BC=8cm