K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAHB và ΔAHC có

AB=AC(ΔABC cân tại A)

AH là cạnh chung

BH=CH(H là trung điểm của BC)

Do đó: ΔAHB=ΔAHC(c-c-c)

b) Ta có: ΔAHB=ΔAHC(cmt)

\(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)

\(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)

nên \(\widehat{AHB}=\widehat{AHC}=\frac{180^0}{2}=90^0\)

⇒AH⊥BC(đpcm)

c) Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-3^2=16\)

hay \(BH=\sqrt{16}=4cm\)

Ta có: \(BC=2\cdot BH\)(H là trung điểm của BC)

hay \(BC=2\cdot4cm=8cm\)

Vậy: BC=8cm

14 tháng 4 2020

ai giải bải này cko mik với ạ mik cảm ơn

một thửa ruộng hình chữ nhật có chiều dài 54m, chiếu rộng bằng 2/3 chiều dài người ta cấy lúa trên thửa ruộng đó trung bình 100m vuông thu được 70kg thóc .Hỏi cả thửa ruộng thu được bao nhiêu tạ thóc

14 tháng 4 2020

A B C H

a) Vì \(\Delta ABC\)là tam giác cân tại A

=> \(AB=AC\)và \(\widehat{B}=\widehat{C}\)

CM \(\Delta AHB=\Delta AHC\)

Xét \(\Delta AHB\)và \(\Delta AHC\)có :

\(AB=AC\left(cmt\right)\)

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

\(HB=HC\)( vì M là trung điểm của BC )

=> \(\Delta AHB=\Delta AHC\left(c.g.c\right)\)

b) CM \(AH\perp BC\)

Vì \(\Delta AHB=\Delta AHC\)

=> \(\widehat{H_1}=\widehat{H_2}\)( hai góc tương ứng ) ( chỗ này mình vẽ thiếu, bạn tự bổ sung )

mà \(\widehat{H_1}+\widehat{H_2}=180^0\)( kề bù )

=> \(\widehat{H}_1=\widehat{H_2}=\frac{180^0}{2}=90^0\)

=> \(AH\perp BC\)( đpcm )

d) Nếu AB = 5cm , AH = 3cm . Tính BC

Vì \(\widehat{H_1}=90^0\)=> \(\Delta AHB\)là tam giác vuông

=> \(AB^2=AH^2+BC^2\)( Đ/lí Pytago )

Thay AB = 5cm, AH = 3cm ta có

\(5^2=3^2+BC^2\)

\(25=9+BC^2\)

=> \(BC^2=16\)

mà \(\sqrt{16}=4\)=> BC = 4cm

26 tháng 6 2020

Trả lời phần d thôi nhé

26 tháng 6 2020

I A B C H E F

a, Vì △ABC cân tại A => AB = AC và ABC = ACB

Xét △BAH và △CAH cùng vuông tại H

Có: AH là cạnh chung

      AB = AC (cmt)

=> △BAH = △CAH (ch-cgv)

b, Vì △BAH = △CAH (cmt)

=> BH = CH (2 cạnh tương ứng)

mà BH + CH = BC

=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)

Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)

=> AH2 = AB2 - BH2 = 102 - 62 = 64

=> AH = 8 (cm)

c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)

Mà ∠HAC = ∠HAB (△CAH = △BAH)

=> ∠AHE = ∠HAB  => ∠AHE = ∠HAE 

=> △AHE cân tại E

d, Gọi { I } = EH ∩ BF

Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)

Mà ∠ABC = ∠ACB (cmt)

=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH

Mà EA = HE (△AHE cân tại E)

=> EA = BE 

Xét △BAH có: E là trung điểm AB (EA = BE)  => HE là đường trung tuyến

F là trung điểm AH => BF là đường trung tuyến 

EH ∩ BF = { I } 

=> I là trọng tâm của △BAH

\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)

Xét △BHI có: BI + HI > BH (bđt △)

\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)

\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)

\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)

26 tháng 6 2020

trả lời phần d thôi nhé

26 tháng 6 2020

c)\(\Delta\)BHA vuông tại A 

=> ^ABH + ^BAH = 90 độ 

mà ^BHE +^EHA = 90 độ 

mà ^BAH = ^EHA  ( vì  \(\Delta\)AEH cân  tại E) 

=> ^ABH = ^BHE =>  \(\Delta\)BEH cân tại E

Gọi K là trung điểm BH => EK vuông BH 

vì \(\Delta\)AEH cân => EF vuông AH 

=> \(\Delta\)EKH = \(\Delta\)HFE => EF = KH = 1/2 BH = 1/4 BC 

Ta có: \(\Delta\)EFH vuông tại F => EH > EF = 1/4 BC 

\(\Delta\)BFH vuông tại H => BF >  BH = 1/2 BC

=> BF + HE > 1/4 BC + 1/2 BC = 3/4 BC

24 tháng 1 2019

a, xét tam giác ABE và tam giác ACD có:

AB=AC(gt); góc A chung; AD=AE(gt)

suy ra tam giác ABE= tam giác ACD(c.g.c)

suy ra BE=CD(đpcm)

24 tháng 1 2019

b, do 2 tam giác ABE và ACD bằng nhau

suy ra góc ABE = góc ACD

mạt khác ABC=ACB(gt)

suy ra góc EBC= góc DCB

suy ra tam giác KBC cân tại K

6 tháng 6 2020

tự kẻ hình nghen :33333

a) Xét tam giác AHB và tam giác AHC có

AH chung

AHC=AHB(=90 độ)

AB=AC(gt)

=> tam giác AHB= tam giac AHC(ch-cgv)

b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )

Xét tam giác AMH và tam giác ANH có

A1=A2(cmt)

AH chung

AMH=ANH(=90 độ)

=> tam giấcMH=tam giác ANH(ch-gnh)

=> AM=AN( hai cạnh tương ứng)

=> tam giác AMN cân A

c) vì tam giác AMN cân A

=> AMN=ANM=(180-MAN)/2

vì tam giác ABC cân A

=> ABC=ACB=(180-BAC)/2

=> AMN=ABC mà AMN đồng vị với ABC=> MN//BC