Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I A B C H E F
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △BAH và △CAH cùng vuông tại H
Có: AH là cạnh chung
AB = AC (cmt)
=> △BAH = △CAH (ch-cgv)
b, Vì △BAH = △CAH (cmt)
=> BH = CH (2 cạnh tương ứng)
mà BH + CH = BC
=> BH = CH = BC : 2 = 12 : 2 = 6 (cm)
Xét △BAH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 = AB2 - BH2 = 102 - 62 = 64
=> AH = 8 (cm)
c, Vì EH // AC (gt) => ∠HAC = ∠AHE (2 góc so le trong)
Mà ∠HAC = ∠HAB (△CAH = △BAH)
=> ∠AHE = ∠HAB => ∠AHE = ∠HAE
=> △AHE cân tại E
d, Gọi { I } = EH ∩ BF
Vì HE // AC (gt) => ∠EHB = ∠ACB (2 góc đồng vị)
Mà ∠ABC = ∠ACB (cmt)
=> ∠EHB = ∠ABC => ∠EHB = ∠EBH => △EHB cân tại E => EB = EH
Mà EA = HE (△AHE cân tại E)
=> EA = BE
Xét △BAH có: E là trung điểm AB (EA = BE) => HE là đường trung tuyến
F là trung điểm AH => BF là đường trung tuyến
EH ∩ BF = { I }
=> I là trọng tâm của △BAH
\(\Rightarrow BI=\frac{2}{3}BF\) và \(HI=\frac{2}{3}EH\)
Xét △BHI có: BI + HI > BH (bđt △)
\(\Rightarrow\frac{2}{3}BF+\frac{2}{3}EH>\frac{BC}{2}\)
\(\Rightarrow\frac{2}{3}\left(BF+EH\right)>\frac{BC}{2}\)
\(\Rightarrow BF+EH>\frac{BC}{2}\div\frac{2}{3}=\frac{BC}{2}.\frac{3}{2}=\frac{3}{4}BC\) (đpcm)
c)\(\Delta\)BHA vuông tại A
=> ^ABH + ^BAH = 90 độ
mà ^BHE +^EHA = 90 độ
mà ^BAH = ^EHA ( vì \(\Delta\)AEH cân tại E)
=> ^ABH = ^BHE => \(\Delta\)BEH cân tại E
Gọi K là trung điểm BH => EK vuông BH
vì \(\Delta\)AEH cân => EF vuông AH
=> \(\Delta\)EKH = \(\Delta\)HFE => EF = KH = 1/2 BH = 1/4 BC
Ta có: \(\Delta\)EFH vuông tại F => EH > EF = 1/4 BC
\(\Delta\)BFH vuông tại H => BF > BH = 1/2 BC
=> BF + HE > 1/4 BC + 1/2 BC = 3/4 BC
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>HB=HC
b: BH=CH=12/2=6cm
=>AC=căn AH^2+HC^2=10cm
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
=>ΔADH=ΔAEH
=>HD=HE
=>ΔHDE cân tại H
Hnay có nhiều tamgiac vuông ghê :)), ko vẽ nổi đg cao tại vì tớ ko bt vẽ trên này.
A B C P/S : t/c minh họa H G
a, Bỏ qua đi >:
b, Xét \(\Delta\)AHB và \(\Delta\)AHC ta có
^AHB = ^AHC = 90^0
AH_chung
AB = AC (gt)
=> \(\Delta\)AHB = \(\Delta\)AHC (ch-cgn)
b, Xét \(\Delta\)ABH có ^H = 90^0
AB = 10cm ; \(BH=\frac{BC}{2}=\frac{12}{2}=6\)cm
Aps dụng đinh lí Py ta go ta có :
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2\Leftrightarrow AH^2=100-36=84\Leftrightarrow AH=8\)cm
c, Vì \(\Delta\)ABC cân tại A
=> AH là đường cao đồng thời là đường trung truyến
Mà G là trọng tâm của \(\Delta\)ABC
=> G \(\in\)AH
Hay 3 điểm A;G;H thẳng hàng
sh-cgn )): cho xin lỗi ... ẩu quá
Sửa thành : ch-cgv bn nhé !