K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1:

A B C Ta có:

\(\widehat{A}=40^0\Rightarrow\frac{180^0-\widehat{A}}{2}=\frac{180^0-40^0}{2}=\frac{140^0}{2}=70^0\)

\(\Rightarrow\widehat{B}=\widehat{C}=70^0\)

Vậy góc ở đáy bằng 700

Bài 2:

A B C D 30 cm 40 cm Áp dụng định lý Pytago vào △ADC vuông tại D,ta có:

\(AC^2=AD^2+DC^2\Rightarrow AC^2=30^2+40^2=900+1600=2500\Rightarrow AC=50cm\left(AC>0\right)\)

Vậy AC=50 cm

Bài 3:

C A B D E a)Xét △ABD vuông tại A và △EBD vuông tại E có:

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(gt)

⇒△ABD = △EBD (cạnh huyền- góc nhọn)

b)Từ △ABD = △EBD(câu a)

⇒AB=EB⇒△ABE cân tại B có \(\widehat{B}=60^0\)nên △ABE đều (đpcm)

13 tháng 2 2020

Thanks you 😊😊😊

25 tháng 7 2018

A B C D E K

p/s:  do bạn chỉ cần hình nên mk chỉ vẽ hình thôi đó, hk tốt

Bài 1)  Cho tam giác ABC có CA = CB = 10cm, AB = 12cm. Kẻ CI vuông góc với AB (I thuộc AB)a) C/m rằng IA =  IBb) Tính độ dài IC.c) Kẻ IH vuông góc với AC (H  thuộc AC), kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và  IK.Bài 2)  Cho tam giác ABC cân tại A.. Trên cạnh AB lấy điểm D. trên cạnh AC lấy điểm E sao cho AD = AE .a)C/M rằng BE = CD.b)C/M rằng góc ABE bằng góc ACD.c) Gọi K là giao điểm của BE...
Đọc tiếp

Bài 1)  Cho tam giác ABC có CA = CB = 10cm, AB = 12cm. Kẻ CI vuông góc với AB (I thuộc AB)

a) C/m rằng IA =  IB

b) Tính độ dài IC.

c) Kẻ IH vuông góc với AC (H  thuộc AC), kẻ IK vuông góc với BC (K thuộc BC).

So sánh các độ dài IH và  IK.

Bài 2)  Cho tam giác ABC cân tại A.. Trên cạnh AB lấy điểm D. trên cạnh AC lấy điểm E sao cho AD = AE .

a)C/M rằng BE = CD.

b)C/M rằng góc ABE bằng góc ACD.

c) Gọi K là giao điểm của BE và CD.Tam giác KBC là tam giác gì? Vì sao?

Bài 3)  Cho tam giác ABC vuông ở C,  có góc A bằng 600. tia phân giác của góc BAC cắt BC ở E. Kẻ EK vuông góc với AB (K thuộc AB).Kẻ BD vuông góc với tia AE (D thuộc tia AE). C/M :

a)AC = AK và AE vuông góc CK.

b)KA = KA

c)EB > AC.

d)Ba đường thẳng AC, BD, KE cùng đi qua một điểm.(nếu học)

Bài 5)  Cho ∆ABC  vuông ở C, có    Aˆ  600 , tia phân giác của góc BAC

cắt BC ở E, kẻ EK vuông góc với AB. (K AB), kẻ BD vuông góc AE (D AE).

Chứng minh                    a) AK=KB                    b)  AD=BC

Bài 6)  Cho ∆ABC cân tại A và hai đường trung tuyến BM, CN cắt nhau tại K

a) Chứng minh rBNC=  rCMB

b)Chứng minh ∆BKC cân  tại K

c) Chứng minh BC  < 4.KM

Bài 7): Cho ∆ ABC vuông tại A có BD là phân giác, kẻ DE ⊥ BC ( E∈BC ). Gọi F là giao điểm của AB và DE.

 Chứng minh rằng

a)   BD là trung trực của AE

b)  DF = DC

c)  AD < DC;

d)  AE // FC.

Bài 8)Cho tam giác ABC vuông tại A, góc B có số đo bằng 600 . Vẽ AH  vuông góc với BC, (H BC ) .

a.  So sánh AB và AC; BH và HC;

b.  Lấy điểm D thuộc tia đối của tia HA sao cho HD = HA. Chứng minh rằng hai tam giác AHC và DHC bằng nhau.

c.  Tính số đo của góc BDC.

Bài 9 . Cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc với AC tại F.

              a.  Chứng minh ∆BEM= ∆CFM .

b.  Chứng minh AM là trung trực của EF.

c..  Từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chứng minh rằng ba điểm A, M, D thẳng hàng.

Bài 10)

Cho tam giác ABC cân tại A, đường cao AH. Biết AB = 5 cm, BC = 6 cm.

a) Tính độ dài các đoạn thẳng BH, AH?

b) Gọi G là trọng tâm tam giác ABC. Chứng minh rằng ba điểm A, G, H thẳng hàng. c) Chứng minh hai góc ABG và ACG bằng nhau

Bài 11): Cho ∆ABC có AC > AB, trung tuyến AM. Trên tia đối của tia MA lấy

điểm D sao cho MD = MA . Nối C với D

a.  Chứng minh         .Từ đó suy ra:

b.  Kẻ đường cao AH. Gọi E là một điểm nằm giữa A và H. So sánh HC và

HB; EC và EB.

Bài 12)Cho ∆ABC (Â = 900) ; BD là phân giác của góc B (D∈AC). Trên tia BC lấy điểm E sao cho BA = BE.

                       a) Chứng minh DE ⊥ BE.

b) Chứng minh BD là đường trung trực của AE.

c) Kẻ AH ⊥ BC. So sánh EH và EC.

 

Bài 13): Cho tam giác nhọn ABC có AB > AC, vẽ đường cao AH.

            a. Chứng minh HB > HC

b.   So sánh góc BAH và góc CAH.

c.   Vẽ M, N sao cho AB, AC lần lượt là trung trực của các đoạn thẳng HM, HN.

Chứng minh tam giác MAN là tam giác cân.

Bai 14)Cho góc nhọn xOy,  trên 2 cạnh Ox, Oy lần lượt lấy 2 điểm A và B sao cho  OA = OB, tia phân giác của góc xOy cắt AB tại I.

a)  Chứng minh OI ⊥ AB .

b)  Gọi D là hình chiếu của điểm A trên Oy, C là giao điểm của AD với OI.

Chứng minh BC ⊥ Ox .p

Bài 15)  Cho tam giác ABC có \ = 900 , AB = 8cm, AC = 6cm .

 

a.  Tính BC .

b.  Trên cạnh AC  lấy điểm E sao cho AE= 2cm;trên tia đối của tia AB lấy điểm D sao cho AD=AB. Chứng minh ∆BEC = ∆DEC .

c.  Chứng minh DE  đi qua trung điểm cạnh BC .

5
3 tháng 5 2015

 

Giải xong chắc xỉu luôn quá!!!

22 tháng 7 2015

làm xong chắc 

Tẩu hỏa nhập ma

28 tháng 8 2020

Bài 1 :                                                             Bài giải

A B C H D F E

Bài 2 :                                                           Bài giải

A C B D E I F

Bài 3 :                                                     Bài giải

A B C D E 1 2 H I

Xét 2 tam giác \(\Delta ABI\text{ và }\Delta EBI\) có : 

\(BA=BE\) ( gt )

\(BD\) : cạnh chung

\(\widehat{B_1}=\widehat{B_2}\) ( BD là đường phân giác của \(\widehat{B}\) )

\(\Rightarrow\text{ }\Delta ABD=\Delta EBD\text{ }\left(c.g.c\right)\)

\(\Rightarrow\text{ }AD=DE\text{ }\left(2\text{ cạnh tương ứng }\right)\)

....

Tự làm tiếp nha ! Mình bận rồi !

26 tháng 3 2017

1) Chứng minh: ΔABD = ΔEBD

Xét  ΔABD và ΔEBD, có:

BD là cạnh huyền chung (gt)

Vậy ΔABD = ΔEBD  (cạnh huyền – góc nhọn)

2) Chứng minh: ΔABE là tam giác đều.

ΔABD = ΔEBD (cmt)

AB = BE

mà  góc B = 60 độ  (gt)

Vậy  ΔABE có  AB = BE và góc 60 độ  nên ΔABE đều.

3) Tính độ dài cạnh BC

Ta có  (gt)

Góc C+B = 90 độ(ΔABC vuông tại A)

Mà BEA = góc B = 60 độ (ΔABE  đều)

Nên góc EAC = góc C ΔAEC cân tại E

EA = EC mà EA = AB = EB = 5cm

Do đó EC = 5cm

Vậy BC = EB + EC = 5cm + 5cm = 10cm

1.Cho hai góc xOy và yOz biết xOy =2yOz a) Tính yOz b) Vẽ Oy' là tia đối của tia Oy, tính số đo góc xOy'c) Viết tên các cặp góc đối đỉnh2.Cho hai đường thẳng AB và CD song song với nhau . Đường thẳng a cắt AB tại E, cắt CD tại F (A và C thuộc cùng một nửa mặt phẳng  bờ EF ) Vẽ tia phân giác Em và Fn của góc AEF và góc EFD . Chứng minh rằng Em // Fn3.Cho tam giác ABC với góc A = 40 độ, 3B = 4C. Tính góc...
Đọc tiếp

1.Cho hai góc xOy và yOz biết xOy =2yOz 

a) Tính yOz 

b) Vẽ Oy' là tia đối của tia Oy, tính số đo góc xOy'

c) Viết tên các cặp góc đối đỉnh

2.Cho hai đường thẳng AB và CD song song với nhau . Đường thẳng a cắt AB tại E, cắt CD tại F (A và C thuộc cùng một nửa mặt phẳng  bờ EF ) Vẽ tia phân giác Em và Fn của góc AEF và góc EFD . Chứng minh rằng Em // Fn

3.Cho tam giác ABC với góc A = 40 độ, 3B = 4C. Tính góc B, C

4.Cho tam giác ABC có góc B=30 độ, góc C = 40 độ. AD là ta phân giác của góc A 

a)Tính góc BAD, CAD

b) Tính góc BDA, CDA

5.Có 16 tờ giấy bạc loại 2000đ, 5000đ và 10000đ. Trị giá mỗi loại tiền trên đều bằng nhau. Hỏi mỗi loại có mấy tờ?

6. Chứng minh rằng nếu a^2=bc(với a khác b và a khác c) thì a+b/a-b=c+a/c-a

7.Cho a/b=c/d. Chứng minh a/3a+b=c/3c+d

8.Cho a/b=c/d. Chứng minh:

a) a^2-b^2/c^2-d^2=ab/cd;                    b)(a-b)^2/(c-d)^2=ab/cd

0