Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM AB=AF
Xét tam giác ABE vuông tại E và tam giác AFE vuông tại E, có:
AE là cạnh chung
góc BAE= góc EAF (AD là tia phân giác của góc BAC)
=>tam giác ABE= tam giác AFE (cạnh góc vuông_góc nhọn kề)
=>AB=AF (2 cạnh tương ứng)
CM: AD là đường phân giác của góc BDF
Xét tam giác ABD và tam giác AFD, có
AD là cạnh chung
AB=AF (cmt)
góc BAD= góc FAD ( AD là tia phân giác của gócBAC)
=> Tam giác ABD= tam giác AFD (c-g-c)
=>Góc BDA= góc FDA (2 góc tương ứng)
=>AD là đường phân giác của góc BDF
a: Xét ΔABF có
AE vừa là đường cao, vừa là phân giác
nen ΔABF cân tại A
b: Xét tứ giác HFKD có
HF//DK
HF=DK
Do đó: HFKD là hình bình hành
=>DH//KF và DH=KF
c: Xét ΔABC co AB<AC
nên góc C<góc ABC
Gọi giao điểm của AD và BE là O.
Xét tam giác AEO và tam giác ABO,có:
AE=AB (gt)
Góc EAO=Góc BAO (gt)
AO là cạnh chung
=> Tam giác AEO=Tam giác ABO (c.g.c)
=>Góc AOE= Góc ABO (2 góc tương ứng)
Ta có: Góc AOE + Góc AOB=180o (2 góc bù nhau)
Mà Góc AOE=Góc AOB (cmt)
=> Góc AOE = 90o
=> AD⊥BE tại O
Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: DB=DE
Ta có: AB=AE
nên A nằm trên đường trung trực của BE(1)
Ta có: DB=DE
nên D nằm trên đường trung trực của BE(2)
Từ (1) và (2) suy AD là đường trung trực của BE
hay AD\(\perp\)BE
Ta có:
AB = AE
=> Tam giác ABE cân tại A
Gọi I là giao điểm AD và BE
Xét tam giác ABI và tam giác AEI
AB = AE
Góc BAI = góc EAI
AD: cạnh chung
=> Tam giác ABI = tam giác AEI (c-g-c)
=> Góc AIB = góc AIE (góc tương ứng)
Mà góc AIB + góc AIE = 180 (kề bù)
=> AIB = AIE = 90
=> AD vuông góc với BE