K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2017

1)

\(A=156+273+533+y\)

\(A=962+y\)

\(962⋮13\)

Để \(A⋮13\rightarrow y⋮13\)

\(A⋮̸13\rightarrow y⋮̸13\)

2)

\(A=1+3+3^2+...+3^{11}\)

* để A chia hết cho 13:

\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(A=\left(1+3^3+...+3^9\right)\left(1+3+3^2\right)\)

\(A=13\left(1+3^3+3^9\right)⋮13\rightarrowđpcm\)

* để A chia hết cho 40:

\(A=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(A=1\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)\(A=\left(1+3^4+...+3^8\right)\left(1+3+3^2+3^3\right)\)

\(A=40\left(1+3^4+...+3^8\right)⋮40\rightarrowđpcm\)

3)

\(25^{24}-25^{23}\)

\(=25^{23}.25-25^{23}.1\)

\(=25^{23}.\left(25-1\right)\)

\(=25^{23}.24\)

\(=25^{23}.4.6⋮6\rightarrowđpcm\)

4) Gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2;a+3;a+4

Tích của 5 số tự nhiên liên tiếp là :

\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\)

Ta có: \(a+1;a+3\) hoặc \(a+2;a+4\)là 2 số chẵn liên tiếp nên sẽ chia hết cho 8

5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5

a;a+1;a+2 luôn sẽ có 1 số chia hết cho 3

5 số tự nhiên liên tiếp đó chia hết cho 3;5;8

\(\Rightarrow⋮120\rightarrowđpcm\)

18 tháng 7 2017

khó quábucminhkhocroi

17 tháng 10 2016

a)\(S=1+3+...+3^{11}\)

\(=\left(1+3+3^2\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(=1\cdot\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(=1\cdot13+...+3^9\cdot13\)

\(=13\cdot\left(1+...+3^9\right)⋮13\)

b)\(S=1+3+...+3^{11}\)

\(=\left(1+3+3^2+3^3\right)+...+\left(3^8+3^9+3^{10}+3^{11}\right)\)

\(=1\left(1+3+3^2+3^3\right)+...+3^8\left(1+3+3^2+3^3\right)\)

\(=1\cdot40+...+3^8\cdot40\)

\(=40\cdot\left(1+...+3^8\right)⋮40\)

 

17 tháng 10 2016

c)\(S=1+3+...+3^{11}\)

\(3S=3\left(1+3+...+3^{11}\right)\)

\(3S=3+3^2+...+3^{12}\)

\(3S-S=\left(3+3^2+...+3^{12}\right)-\left(1+3+...+3^{11}\right)\)

\(2S=3^{12}-1\)

\(S=\frac{3^{12}-1}{2}\)

25 tháng 10 2016

1) Chứng minh rằng tích của ba số tự nhiên liên tiếp chia hết cho 6.

=> Gọi n, n+1, n+2( n \(\in\) \(N\)) là 3 số tự nhiên liên tiếp

- Trong hai số tự nhiên liên tiếp luôn có một số chẵn nên:

n.( n+1). ( n+2) \(⋮\)2.

- Trong ba số tự nhiên liên tiếp luôn có một thừa số \(⋮\) 3.

Mà 2 và 3 là hai số nguyên tố cùng nhau.

Suy ra: n.(n+1).(n+2) \(⋮\) 2 . 3 = 6(đpcm).

2) Chứng tỏ: 3n+3 + 3n+1 + 2n+3 + 2n+2 chia hêt cho 6.

=> 3n+3 + 3n+1 + 2n+3 + 2n+2

= 3n. 33 + 3n . 3 + 2n . 23 + 2n . 22

= 3n. (27+3) + 2n . ( 8+4)

= 6. ( 3n . 5 + 2n . 2)

= 6k với k = 3n . 5 + 2n+1

Mà 6k \(⋮\) 6 => ( 3n+3 + 3n+1+ 2n+3 + 2n+2) \(⋮\) 6(đpcm).

3) a) ( 6100 - 1) \(⋮\) 5

b) 2120 - 1110 chia hết cho cả 2 và 5

a) ( 6100 - 1) \(⋮\)5

=> Số 6100 có chữ số tận cùng là 6.

Nên 6100 - 1 là số có chữ số tận cùng là 5( 6-1=5)

=> ( 6100 - 1) \(⋮\)5(đpcm).

b) 2120 - 1110 chia hết cho cả 2 và 5.

=> Số 2120 có chữ số tận cùng là 1.

Số 1110 có chữ số tận cùng cũng là 1.

Nên 2120 - 1110 là số có chữ số tận cùng là 0.

=> 2120 - 1110 chia hết cho 2 và 5(đpcm).

4) Chứng minh rằng:

a) ( 450+108+180) \(⋮\)9

b) ( 1350 +735+255) \(⋮\)5

c) ( 32624+2016) \(⋮\)4

a) ( 450+108+180) \(⋮\)9

=> Vì 450 \(⋮\) 9; 108 \(⋮\) 9; 180 \(⋮\)9

Nên ( 450+108+180) \(⋮\)9.

b) ( 1350+735+255) \(⋮\)5

=> Vì 1350 \(⋮\) 5; 735 \(⋮\)5; 255 \(⋮\)5

Nên ( 1350+735+255) \(⋮\)5.

c) ( 32624 + 2016) \(⋮\) 4

=> Vì 32624 \(⋮\)4; 2016 \(⋮\)4

Nên ( 32624 + 2016) \(⋮\)4.

Đây là câu trả lời của mình, mình chúc bạn học tốt!

25 tháng 10 2016

uk

Bài rút gọn

Ta có: \(\frac{4^5\cdot6^7}{2^8\cdot9^4}\)

\(=\frac{2^{10}\cdot2^7\cdot3^7}{2^8\cdot3^8}\)

\(=2^9\cdot\frac{1}{3}=\frac{2^9}{3}=\frac{512}{3}\)

Bài chứng minh phân số tối giản

Gọi d=ƯC(n+13;2n+27)

\(\Leftrightarrow\left\{{}\begin{matrix}n+13⋮d\\2n+27⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+26⋮d\\2n+27⋮d\end{matrix}\right.\)\(\Leftrightarrow2n+26-\left(2n+27\right)⋮d\)

\(\Leftrightarrow2n+26-2n-27⋮d\)

\(\Leftrightarrow-1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)\)

\(\Leftrightarrow d\in\left\{1;-1\right\}\)

mà -1<1

nên d=1

hay ƯCLN(n+13;2n+27)=1

hay \(A=\frac{n+13}{2n+27}\) là phân số tối giản(đpcm)

18 tháng 4 2020

Cảm ơn bạn rất nhiều

6 tháng 7 2017

Bài 1:x là số chẵn(x\(\in\)N)

6 tháng 7 2017

bai 1 :x la so chan (chia het cho 2)

         x la so le (khong chia het cho 2

bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5

bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11

6 tháng 7 2018

❤ѕѕѕσиɢσкυѕѕѕ❤

6 tháng 7 2018

Bớt xàm đi ông