Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Theo bài ra ta có:
\(\left(x-y\right)^2=x^2-2xy+y^2\)
\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)
\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)
\(=25-10y+y^2+25-10x+x^2-4\)
\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)
\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)
\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)
\(=50-50+5^2-4-4\)
\(=25-8=17\)
Vậy giá trị của \(\left(x-y\right)^2\)là 17
a) Ta có:\(\left(x+y\right)^2=5^2\)(Vì x + y = 5)
\(\Leftrightarrow x^2+2xy+y^2=25\)
\(\Leftrightarrow x^2+2.4+y^2=25\)
\(\Leftrightarrow x^2+8+y^2=25\)
\(\Leftrightarrow x^2+y^2=17\)
b) \(\left(x+y\right)^2=3^2\)(Vì x + y = 3)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow2xy+5=9\)
\(\Leftrightarrow2xy=4\)
\(\Leftrightarrow xy=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=3\left(5-2\right)=9\)
a) ta có:(x+y)2=x2+2xy+y2=>x2+y2=(x+y)2-2xy
thay x+y=5;xy=4 vào biểu thức ta có:
52-2×4=25-8=17
a) \(\left(x+y-z\right)^2=\left[\left(x+y\right)-z\right]^2\)
\(=\left(x+y\right)^2-2\left(x+y\right)z+z^2\)
\(=x^2+2xy+y^2-2zx-2yz+z^2\)
\(=x^2+y^2+z^2+2xy-2yz-2zx\)
b) \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)
\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)
\(=x^4-y^4\)
c) \(\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)
\(=x^5+y^5\)
a) \(A=x^2y+y+xy^2-x\) (hẳn đề là vậy)
\(A=xy\left(x+y\right)+\left(y-x\right)\)
\(A=\left(-5\right).2\left(-5+2\right)+2+5\)
\(A=30+7=37\)
b) \(B=3x^3-2y^3-6x^2y^2+xy\)
\(B=3.\left(\frac{2}{3}\right)^3-2.\left(\frac{1}{2}\right)^3-6.\left(\frac{2}{3}\right)^2.\left(\frac{1}{2}\right)^2+\frac{2}{3}.\frac{1}{2}\)
\(B=\frac{8}{9}-\frac{1}{4}-\frac{2}{3}+\frac{1}{3}\)
\(B=\frac{11}{36}\)
c) \(C=2x+xy^2-x^2y-2y\)
\(C=2.\left(-\frac{1}{2}\right)+\left(-\frac{1}{2}\right).\left(-\frac{1}{3}\right)^2-\left(-\frac{1}{2}\right)^2.\left(-\frac{1}{3}\right)-2.\left(-\frac{1}{3}\right)\)
\(C=-1-\frac{1}{18}+\frac{1}{12}+\frac{2}{3}\)
\(C=-\frac{11}{36}\)
Làm mẫu 1 phần nếu ko bít thì hỏi
Ta có: \(x-y=m\)
\(\Rightarrow\left(x-y\right)^2=m^2\)
\(\Leftrightarrow x^2-2xy+y^2=m^2\)
\(\Leftrightarrow x^2+y^2-2n=m^2\)
\(\Leftrightarrow x^2+y^2=m^2+2n\)
A=3.(5-xy)
ta có: \(\left(x+y\right)^2=9\Leftrightarrow x^2+2xy+y^2=9\Leftrightarrow5+2xy=9\Leftrightarrow xy=2\)
=> A=3(5-2)=9
9 ban nhe