Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: x khác 1, x khác -1
a) \(P=\frac{5x-7}{2\left(x-1\right)}-\frac{4}{x^2-1}+\frac{9-3x}{2\left(x-1\right)}\)
\(P=\frac{8x-2}{2\left(x-1\right)}-\frac{4}{\left(x+1\right)\left(x-1\right)}\)
\(P=\frac{2\left(4x-1\right)}{2\left(x-1\right)}-\frac{4}{\left(x+1\right)\left(x-1\right)}\)
\(P=\frac{\left(4x-1\right)\left(x+1\right)-4}{\left(x+1\right)\left(x-1\right)}\)
\(P=\frac{4x^2+4x-x-1-4}{\left(x+1\right)\left(x-1\right)}\)
\(P=\frac{4x^2+3x-5}{\left(x+1\right)\left(x-1\right)}\)
a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\), \(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)
+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)
\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)
+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)
+) \(x+1\ne0\Leftrightarrow x\ne-1\)
+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)
\(\Leftrightarrow x\ne0;x\ne-2\)
+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)
Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)
a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)
\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)
\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)
b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)
Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-2 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -4 | -1 | 0 | 1 | 3 | 4 | 5 | 8 |
Vậy ............................
We have \(P=\frac{5x-7}{2\left(x-1\right)}-\frac{4x}{x^2-1}+\frac{9-3x}{2\left(x-1\right)}\)
\(\Rightarrow P=\frac{5x-7+9-3x}{2\left(x-1\right)}-\frac{4x}{x^2-1}\)
\(\Rightarrow P=\frac{2x+2}{2\left(x-1\right)}-\frac{4x}{x^2-1}\)
\(\Rightarrow P=\frac{x+1}{x-1}-\frac{4x}{x^2-1}=\frac{\left(x+1\right)^2}{x^2-1}-\frac{4x}{x^2-1}\)
\(=\frac{x^2+2x+1}{x^2-1}-\frac{4x}{x^2-1}=\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{x-1}{x+1}\)
\(P\inℤ\Leftrightarrow x-1⋮x+1\)
\(\Rightarrow\left(x+1\right)-2⋮x+1\Rightarrow2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Prints:
So \(x\in\left\{0;-2;1;-3\right\}\)