Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
Do đó 4p + 1 là hợp số (.)
tick nhé
P là số tự nhiên lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm)
*Nếu p⋮⋮ 3 dư 1 thì p=3k+1(k∈∈ N*)
Khi đó 8p+1=8(3k+1)=24k+9 ⋮⋮ 3
Dễ thấy
24k+9 là hợp số {24k+9⋮324k+9>3{24k+9⋮324k+9>3
Nếu p chia 3 dư 2
Khi đó 8p-1 = 8(3k+2)-1=24k+15
Dễ thấy :24+15⋮⋮ 9 {24k+15⋮324k+15>3{24k+15⋮324k+15>3
=> 8p-1 và 8p+1 không đòng thời là số nguyên tố
Xét 3 số tự nhiên liên tiếp 8p-1; 8p; 8p+1
Do tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3 nên ta có:
(8p-1).8p. (8p+1) chia hết cho 3 mà 8p và 8p-1 không thể chia hết cho 3 nên 8p+1 phải chia hết cho 3\(\Rightarrow\)8p+1 là hợp số.
Vậy 8p+1 là hợp số.
Xét 3 số tự nhiên liên tiếp 8p-1 ; 8p ; 8p +1
Do tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3 nên ta có:
(8p-1).8p.(8p+1) chia hết cho 3.
Mà 8p-1 và 8p không thể chia hết cho 3 \(\Rightarrow\)8p+1 chia hết cho 3 \(\Rightarrow\)8p+1 là hợp số.
Vậy 8p+1 là hợp số.
bài 2 câu b,:Cũng thế nhưng xét trực tiếp 3 số khác:
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
Biết mỗi bài đó thôi
Theo bài ra ta có :
p là SNT lớn hơn 3 (1)
2p + 1 là SNT (2)
Vì p là SNT lớn hơn 3 (theo (1) ) nên p có 2 dạng : 3k+1 hoặc 3k+2 ( k là STN )
* Nếu p = 3k+1 thì :
2p+1 = 2(3k+1)+1=6k+3=3(2k+1) chia hết cho 3 hay 2p+1 chia hết cho 3 (3)
Mà p>3 => 2p+1>3 (4)
Từ (3) và (4) => 2p+1 là hợp số ( trái với (2) , loại )
Vậy p=3k+2
=> 4p+1=4(3k+2)+1=12k+9 = 3(4k+3) chia hết cho 3 hay 4p+1 chia hết cho 3 (5)
Mà p>3 => 4p+1>3 (6)
Từ (5) và (6) => 4p+1 là hợp số
=> đpcm
P là số nguyên tố lớn hơn 5 và 2p+1 cũg là số nguyen tố thì có dạg 3k +1 và 3k+2
Nếu p=3k+1thif chia het cho 3 => 3k+1k phải là số nguyen tố => loại
=> p =3k+2 . Khi đó chia het cho 3
=> 4k+1 là hop so
TICH NHA CHI IU
1. Các số đó là 2,3,5,7
2.Các số sau là hợp sô hết vì :
a) A chia hết cho 3
b) B chia hết cho 11
c) C chia hết cho 101
d) D = 1112111 = 1111000 + 1111 chia het cho 1111
e) E chia hết cho 3 vì 1! + 2! = 3 chia hết cho 3, còn 3! + ... + 100! cũng chia het cho 3
g) Số 3 . 5 . 7 . 9 - 28 chia hết cho 7
h) Số 311141111 = 311110000 + 31111 chia hết cho 31111
3. Xét p dưới dạng : 3k ( khi đó p = 3), 3k + 1, 3k + 2 ( k thuộc N ). Dạng thứ 3 ko thỏa mãn đề bài ( vì khi dó 8p - 1 là hợp số), 2 dạng trên đều cho 8p + 1 là hợp số.
4. r = 1.
a,b,c,d,g,h là hợp số
e là số nguyên tố
tớ chỉ biết làm bài 2 thôi
Tìm P đi
Cho p =2,p=3
Nếu tìm đc đáp án p rồi thì cm lớn hơn sai = cách:
Nếu p là k thì lớn hơn sẽ có TH p=kn+1,=kn+2,vv