Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn có thể phân tích từng vế trong đẳng thức thì sẽ ra vế còn lại hoặc có thể phân tích cả hai vế.
Bạn áp dụng 7 hằng đẳng thức ta đã học từ đầu năm học lớp 8 là ra nhé
a )
\(\left(1+3a\right)^2=9a^2+6a+1\)
b )
\(\left(2a+3\right)\left(2a-3\right)=4a^2-9\)
c )
\(\left(2a^2+b^2\right)^2=4a^4+4a^2b^2+b^4\)
d )
\(\left(\dfrac{a}{2}-2b\right)^2=\dfrac{a^2}{4}-2ab+4b^2\)
e )
\(\left(a^2+5\right)\left(5-a^2\right)=25-a^2\)
f )
\(\left(\dfrac{1}{2}a-2b\right)^3=\dfrac{1}{8}a^3-\dfrac{3}{2}a^2b+6ab^2-8b^3\)
Chúc bạn học tốt !!
Bài 1:
Ta có: \(A=\left(2a-3b\right)^2+2\left(2a-3b\right)\left(3a-2b\right)+\left(2b-3a\right)^2\)
\(=\left(2a-3b\right)^2-2\cdot\left(2a-3b\right)\cdot\left(2b-3a\right)+\left(2b-3a\right)^2\)
\(=\left(2a-3b-2b+3a\right)^2\)
\(=\left(5a-5b\right)^2\)
\(=\left[5\cdot\left(a-b\right)\right]^2=25\left(a-b\right)^2\)
Thay a-b=0 vào biểu thức \(A=25\left(a-b\right)^2\), ta được:
\(A=25\cdot0^2=0\)
Vậy: Khi a-b=0 thì A=0
Bài 3:
a) Ta có: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\)
Ta có: \(\left(x+4\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x+4\right)^2-16\ge-16\forall x\)
Dấu '=' xảy ra khi x+4=0
hay x=-4
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2+8x\) là -16 khi x=-4
ta có :
(a+b)3-(a-b)3= a3+3a2b+3ab2+b3-a3+3a2b-3ab2+b3
=6a2b+2b3
=2b(3a2+b2)
vậy (a+b)3-(a-b)3=2b(3a2+b2)