K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2017

a)ta đặt A=111....111(9c/s 1)=>A chia hết cho 9 và được B

Số có 81 chữ số 1 cấu tạo bởi AAAA.....A(9 lần A)

Khi đem chia nó cho 9 được BBB....BB (9 lần B)

Tổng các chữ số của kết quả trên là 9xB chia hết cho 9

Nên số 111.....111(81 c/s 1) chia hết cho 9=> chia hết cho (9 mũ 2)=> chia hết cho 81

Vậy số gồm 81 chữ số 1 thì chia hết cho 81

b)...................................

Chọn tớ đi thì tớ giải cho

Tớ tạm thời chưa nhớ ra nha

18 tháng 12 2017

chọn mình đi bạn

6 tháng 10 2015

Ta có : 1.81=81

=> 81chia hết cho 81

Vậy 81 chữ số 1 chia hết cho 81

23 tháng 10 2019

b. Câu hỏi của Vu Khanh Linh - Toán lớp 6 - Học toán với OnlineMath

29 tháng 10 2017

a ) Gọi \(A=111......1\left(81\text{chữ số}\right);B=111....1\left(9\text{chữ số}\right)\text{Đặt}C=A:B\text{thì }:\)

\(C=100.....0\left(8\text{ chữ số0}\right)1000.....0\left(8\text{ chữ số0}\right)1000...0000\left(8\text{ chữ số}0\right)1\)

gồm 9 chữ số 1 và 64 chữ số 0 , chia hết cho 9

Ta thấy : A =B . C mà B và C cùng chia hết cho 9, vậy A chia hết cho 81 ( đpcm )

b ) Gọi \(A=1010.....10\left(27\text{cặp chữ số 10}\right),B=1010.....10\left(9\text{cặp chữ số 10}\right)\)

Đặt \(C=A:B,\text{chứng minh rằng}B⋮9;C⋮3\Rightarrow C⋮27\left(đpcm\right)\)

23 tháng 10 2019

Câu hỏi của Vu Khanh Linh - Toán lớp 6 - Học toán với OnlineMath

9 tháng 9 2023

Số đã cho có thể viết là \(N=101010...10\) (27 cụm 10)

Do đó \(N=10^{53}+10^{51}+10^{49}...+10^1\)

\(\Rightarrow100N=10^{55}+10^{53}+10^{51}+...+10^3\)

\(\Rightarrow99N=10^{55}-10\)

\(\Rightarrow N=\dfrac{10^{55}-10}{99}\)

Ta sẽ chứng minh \(\dfrac{10^{55}-10}{99}⋮27\) hay \(10^{55}-10⋮2673\)

Mà \(2673=3^5.11\) nên ta cần cm \(10^{55}-10⋮243=3^5\) và \(10^{55}-10⋮11\)

*) Chứng minh \(10^{55}-10⋮11\)

 Ta thấy 10 chia 11 dư \(-1\) nên \(10^{54}\) chia 10 dư 1. Từ đó \(10^{54}-1⋮11\) \(\Rightarrow10^{55}-10⋮11\)

*) Chứng minh \(10^{55}-10⋮3^5\)

Điều này tương đương với \(10^{54}-1⋮3^5\)

Ta có \(10^{54}-1=\left(10^{27}-1\right)\left(10^{27}+1\right)\)

 \(=\left(10^9-1\right)\left(10^{18}+10^9+1\right)\left(10^{27}+1\right)\)

 \(=\left(10^3-1\right)\left(10^6+10^3+1\right)\left(10^{18}+10^9+1\right)\left(10^{27}+1\right)\)

\(=\left(10-1\right)\left(10^2+10+1\right)\left(10^6+10^3+1\right)\left(10^8+10^9+1\right)\left(10^{27}+1\right)\)

 Ta thấy \(10-1=9=3^2\)\(10^2+10+1,10^6+10^3+1,10^{18}+10^9+1⋮3\) do chúng đều có tổng các chữ số là 3. Từ đó \(10^{54}-1⋮3^5\)

 Vậy, ta có đpcm.