Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có x^2 =yz nên x^3=xyz
z^2=xy nên z^3 =xyz
y^2=xz nên y^3=xzy
từ 3 điều trên suy ra x^3=z^3=y^3
nên x=y=z
Đặt x2 = yz (1) ; y2 = xz (2) ; z2 = xy (3)
Từ (1) => z= x2/y. Từ (2) => z = y2/x => x2/y = y2/x => x3 = y3 => x = y (*)
Tương tự : Từ (1) => y =x2/z. Từ (3) => y = z2/x => x2/z = z2/x => x3 = z3 => x = z(**)
Từ (*) và (**) suy ra x = y = z
\(x^2=yz\Leftrightarrow\frac{x}{y}=\frac{z}{x};y^2=xz\Leftrightarrow\frac{y}{z}=\frac{x}{y};z^2=xy\Leftrightarrow\frac{z}{x}=\frac{y}{z}\)
=>\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=>x=y;y=z;z=x
=>x=y=z
Ta có: \(x^2=yz\Leftrightarrow\frac{x}{z}=\frac{y}{x}\)
x2 = zy => \(\frac{y}{x}\) = \(\frac{x}{z}\)
y2 = xz => \(\frac{y}{x}\) = \(\frac{z}{y}\)
=> \(\frac{y}{x}\) = \(\frac{x}{z}\) = \(\frac{z}{y}\) theo tính chất bắc cầu
=> \(\frac{y}{x}\) = \(\frac{x}{z}\) = \(\frac{z}{y}\) = \(\frac{x+y+z}{x+y+z}\) = 1
=> y = x . 1 => y = x
=> x = z . 1 => x = z
=> z = y . 1 => z = y
theo tính chất bắc cầu => x = y = z