K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tổng đã cho của đề bài bằng bao nhiêu thế cậu

22 tháng 2 2019

pppppppppppppppppppppppppppppppppppppppppppppp'ppppppppppppppppppppppppppppp

ppppppppppppp

22 tháng 2 2019

Tao co:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow yz+xz+xy=0\)

\(Suyra:yz=-xz-xy;xz=-yz-xy;xy=-yz-xz\)

\(\Rightarrow x^2+2yz=x^2+yz-xz-xy=x\left(x-y\right)-z\left(x-y\right)=\left(x-y\right)\left(x-z\right)\)

\(\Rightarrow y^2+2xz=y^2+xz-yz-xy=z\left(x-y\right)-y\left(x-y\right)=\left(x-y\right)\left(z-y\right)\)

\(\Rightarrow z^2+2xy=z^2+xy-yz-xz=z\left(z-y\right)-x\left(z-y\right)=\left(z-y\right)\left(z-x\right)\)

\(Thay:\frac{1}{\left(x-y\right)\left(x-z\right)}+\frac{1}{\left(x-y\right)\left(z-y\right)}+\frac{1}{\left(z-y\right)\left(z-x\right)}\)

\(=\frac{z-y+x-z-x+y}{\left(x-y\right)\left(y-z\right)\left(x-z\right)}=0\left(dpcm\right)\)

^^

23 tháng 6 2020

Biến thì khác nhau nhưng quan trọng là cách làm :)) 

Vào TKHĐ của tớ để xem hình ảnh nhé, dài ngại chả muốn viết :V

12 tháng 3 2019

Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2\Rightarrow xy+yz+zx=0\left(1\right)\)

Đặt xy=a ; yz=b ; xz =c 

=> \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}\)

Xét \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=a^3+b^3+c^3\)

mà \(a^3+b^3+c^3=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc+3abc\)

\(=\left(a+b+c\right)^3-3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)-3abc+3abc\)

\(=\left(a+b+c\right)^3-3abc\left(a+b+c\right)+3\left(a+b\right)c\left(a+b+c\right)+3abc\)

Mà ta có \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

=> \(\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3=3\left(xyz\right)^2\)

=> \(\frac{\left(xy\right)^3+\left(yz\right)^3+\left(xz\right)^3}{\left(xyz\right)^3}=\frac{3\left(xyz\right)^2}{\left(xyz\right)^3}=\frac{3}{xyz}\left(dpcm\right)\)

Bạn rút gọn vài bước đi nhé :3 mk trình bày ko hay cho lắm :3 nhớ k giùm mk nha :3