Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình thấy cậu ko hiểu nên nói cho cậu hiểu luôn
a. Xét hai tg BEC và ACD có ^C chung, tg AHD vuông cân tại H (HD = HA) nên ^ADH = 45 độ suy ra
^ADC = 135 độ . Từ E vẽ thêm đường vuông góc AH tại K. Có tg AHB = tgEKA (vì AH = HD = KE, ^AEK = ^ACB = ^BAH) nên AB = AEVaayj tg BAE vuông cân tại A nên ^AEB = 45 độ suy ra ^BEC = 135 độ. Vậy ^BEC = ^ADC = 135 độ và ^C chung nên tg BEC và tam giác ADC đồng dạng.
Suy ra BE = AB.căn2 = m.căn2
b. Có AM = BE/2 (trung tuyến ứng cạnh huyền của tg vuôngBAE, DM = BE/2 trung tuyến ứng cạnh huyền của tg vuông BDE) vậy AM = MDHM chung AH = HD nên tgAHM = tgDHM(ccc) nên ^AHM =
^MHD = 45 độ suy ra ^BHM = 90 độ + 45 độ = 135 độ = ^BEC . Hay tg BHM và tgBEC có ^BHM = ^BEC, ^MBH chung nên hai tam giác BHM và BEC đồng dạng (gg) .
^AHM = 45 độ
Bạn tự vẽ hình nhé!
a) Xét tam giác ADC và tam giác BEC có:
\(\widehat{C}\)chung
\(\frac{CD}{CE}=\frac{CA}{CB}\)(2 tam giác vuông CDE và CAB đồng dạng)
=> Tam giác ADC đồng dạng với tam giác BEC (cgc) (đpcm)
b) Tam giác AHD vuông tại H (gt)
=> \(\widehat{BEC}=\widehat{ADC}=135^o\)
Nên \(\widehat{AEB}=45^o\)do đó tam giác ABE vuông tại A
=> BE=\(AB\sqrt{2}=3\sqrt{2}\)
Nguồn: Đặng Thị Nhiên
c) Tam giác ABE vuông tại A nên tia AM là phân giác BAC
\(\Rightarrow\frac{GB}{GC}=\frac{AB}{AC}\)
Vì tam giác ABC đồng dạng tam giác DEC nên:
\(\frac{AB}{AC}=\frac{ED}{DC}=\frac{AH}{HC}=\frac{HD}{HC}\)(DE//AH)
Do đó: \(\frac{GB}{GC}=\frac{HD}{HC}\Rightarrow\frac{GB}{GB+GC}=\frac{HD}{HD+HC}\Rightarrow\frac{GB}{GC}=\frac{AH}{AH+HC}\left(đpcm\right)\)
Nguồn: Đặng Thị Nhiên
Câu hỏi của Trần Hữu Phước - Toán lớp 8 - Học toán với OnlineMath
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, B] Đoạn thẳng n: Đoạn thẳng [A, H] Đoạn thẳng g_1: Đoạn thẳng [B, E] Đoạn thẳng i_1: Đoạn thẳng [A, F] Đoạn thẳng j_1: Đoạn thẳng [D, F] Đoạn thẳng k_1: Đoạn thẳng [A, G] A = (-0.43, -5.14) A = (-0.43, -5.14) A = (-0.43, -5.14) C = (21, -5.05) C = (21, -5.05) C = (21, -5.05) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm của k, i Điểm H: Giao điểm của k, i Điểm H: Giao điểm của k, i Điểm D: Giao điểm của c, i Điểm D: Giao điểm của c, i Điểm D: Giao điểm của c, i Điểm F: Giao điểm của b, f_1 Điểm F: Giao điểm của b, f_1 Điểm F: Giao điểm của b, f_1 Điểm E: Giao điểm của b, f Điểm E: Giao điểm của b, f Điểm E: Giao điểm của b, f Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm M: Trung điểm của g_1 Điểm G: Giao điểm của h_1, i Điểm G: Giao điểm của h_1, i Điểm G: Giao điểm của h_1, i
Cô hướng dẫn nhé
a) \(\Delta DEC\sim\Delta AEF\left(g-g\right)\)
b) Từ định lý Pi-ta-go ta tìm được BC = 5 cm.
\(\Delta ABH\sim\Delta CBA\left(g-g\right)\Rightarrow\frac{AB}{BC}=\frac{AH}{AC}=\frac{BH}{BA}\Rightarrow\frac{3}{5}=\frac{AH}{4}=\frac{BH}{3}\)
Vậy thì AH = 2,4 cm, BH = 1,8 cm. Khi đó BD - BH + HD = BH + AH = 2,4 + 1,8 = 4,2 cm.
\(S_{ABD}=\frac{1}{2}.AH.BD=\frac{1}{2}.2,4.4,2=5.04\left(cm^2\right)\)
c) Ta cm được AG là phân giác, từ đó suy ra \(\frac{GB}{GC}=\frac{AB}{AC}\) (TC tia phân giác)
Mà \(\frac{AB}{AC}=\frac{AH}{HC}=\frac{HD}{HC}\) (TC tam giác đồng dạng)
Vậy \(\frac{GB}{GC}=\frac{HD}{HC}\)