K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2022

- Gợi ý:

Câu 1:

a) - Sửa lại đề: Tam giác ABD=Tam giác ICE (c-g-c) do có AB=AC=CI, góc ABC=góc ACB=góc ECI, BD=CE.

b) Do tam giác ABD=Tam giác ICE nên AD=IE : 

AE+EI>AI=2AC=AB+AC

=>AE+AD>AB+AC.

Câu 2:

- Tam giác MBD=Tam giác NCE do góc MDB=góc CEN=900, BD=CE,

góc MBD=góc NCE. nên BM=CN

Câu 3:

- AB=AM+BM ; CI=CN+NI.

=>AM=NI.

=>AM+AN=AM+NI=AI=AB+AC.

-c/m MN>BC (c/m mệt lắm nên mình nói ngắn gọn).

MN cắt BC tại F =>MF>DF, NF>EF

MF+NF>DF+EF=DF+CF+CE=DF+CF+BD=BC =>MN>BC

29 tháng 1 2022

cảm ơn bạn nhiều ! 

5 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath

2 tháng 4 2017

đây e ơi https://olm.vn/hoi-dap/question/541217.html

5 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath

21 tháng 1 2017

nếu  cậu biết câu b con 1, câu 2 mách tớ 

5 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath

19 tháng 3 2016

a,Xét tg BAD và tg CEI 

Có : CE=BD( gt)

Mà : AC=AB (1)

Và : AC=CI(2)

Từ (1)(2) =>AB=CI

Mà : B=C(tg cân)(3)

Và : goc ACD= góc ICE(đđ)(4)

Từ (3) và (4) => góc ICE= góc ADB

Nên : tg ABD=tgICE (cgc)

Vậy đpcm

b, Xét tg ABC 

Theo định lý pi-ta-go có :

BC2=AB2+AC2 (1)

Xét tg ADE 

Theo định lý P-i-ta-go có :

DE2=AE2+AD2      (2)

Từ (1) và (2) suy ra :

(BC2=AB2+AC2)= (DE2=AE2+AD2)

Vây : đpcm

Câu 2 :ko bt

Câu 3 :ko bt

19 tháng 3 2016

Hình nek

A B C D E I M N

Ai giải dược mik k cho

Còn ai ko giải thì next giùm :))))))

5 tháng 3 2018

1)

+)  Ta thấy \(\widehat{ECI}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Mà \(\widehat{ACB}=\widehat{ABC}\)   (Tam giác ABC cân tại A)

nên \(\widehat{ECI}=\widehat{DBA}\)

Xét tam giác ABD và tam giác ICE có:

BD = CE (gt)

\(\widehat{DBA}=\widehat{ECI}\left(cmt\right)\)

CI = BA ( Cùng bằng AC)

\(\Rightarrow\Delta ABD=\Delta ICE\left(c-g-c\right)\)

+) Xét tam giác AEI, theo bất đẳng thức trong tam giác, ta có:

   AI > AE + EI

Lại có do \(\Delta ABD=\Delta ICE\Rightarrow AD=IE\)

Vậy nên ta có AI > AE + AD \(\Rightarrow2AC>AD+AE\Rightarrow AB+AC>AD+AE\)

2) Do \(\Delta ABD=\Delta ICE\Rightarrow\widehat{MBD}=\widehat{NCE}\)

Vậy thì ta thấy ngay \(\Delta BDM=\Delta CEN\)   (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow BM=CN\)

3) Ta thấy AB + AC = AM + MB + AC = AM + CN + AC = AM  + AN

Ta cần chứng minh BC < MN.

Do BD = EC nên AC = DE

Xét tam giác vuông MDO ta có DO < MO (Quan hệ đường vuông góc, đường xiên)

Ta cũng có OE < ON

Vậy nên DE < MN hay BC < MN

Từ đó: AB + AC + BC < AM + AN + MN

Hay \(P_{AMN}>P_{ABC}\) 

4 tháng 3 2018

1, a, Xét tam giác ABD và ICE có : 

BD=CE

AB=CI ( =AC )

góc ABD=ICE ( vì góc ABD=ACD mà ACD=ICE )

=> tam giác ABD=ICE ( c.g.c )