Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K E M y x D
a, xét tứ giác ACBM có: BM // AC (gt) và AM // BC (gt)
=> ACBM là hình bình hành (đn)
b, BE // AD (gt)
BD _|_ AD (gt)
=> BE _|_ AD (đl)
=> ^EBD = 90 = ^BDA = ^AEB
=> ADBE là hình chữ nhật (dh)
c, Tam giác ABC cân tại B (gt) ; BD là đường cao (gt)
=> BD là trung tuyến của tam giác ABC (đl)
=> D là trung điểm của AC (Đn)
D là trung điểm của BK do B đối xứng với K qua D (Gt)
=> BAKC là hình bình hành (dh)
mà BD _|_ AC (Gt)
=> BAKC là hình thoi (dh)
d, có BAKC là hình thoi (câu c)
=> AK // BC (tc)
AM // BC (gt)
=> A; M; K thẳng hàng (tiên đề Ơclit) (1)
AK = BC do BAKC là hình thoi (câu c)
AM = BC do ACBM là hình bình hành (câu a)
=> AM = MK và (1)
=> A là trung điểm của KM (đn)
=> M đối xứng với K qua A (đn)
e, BMKC là hình thang (KM // BC)
để BMKC là hình thang cân
<=> ^BMK = ^MKC (dh)
^BMK = ^BCA do BMAC là hình bình hành (câu a)
^AKC = ^CBK do AKCB là hình thoi (câu c)
<=> ^ABC = ^ACB
mà tam giác ABC cân tại B (Gt)
<=> tam giác ABC đều
a:
AK//BD
N\(\in\)BD
Do đó: AK//BN
Xét ΔMAK và ΔMBN có
\(\widehat{MAK}=\widehat{MBN}\)(hai góc so le trong, AK//BN)
MA=MB
\(\widehat{AMK}=\widehat{BMN}\)
Do đó: ΔMAK=ΔMBN
=>AK=BN
Xét tứ giác AKBN có
AK//BN
AK=BN
Do đó: AKBN là hình bình hành
b: ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường và AC=BD
mà AC cắt BD tại O
nên O là trung điểm chung của AC và BD
Xét ΔBAC có
CM,BO là các đường trung tuyến
CM cắt BO tại N
Do đó: N là trọng tâm của ΔBAC
Xét ΔABC có
N là trọng tâm của ΔBAC
CM là đường trung tuyến ứng với cạnh AB
Do đó: \(CN=2NM\)(1)
Ta có: AKBN là hình bình hành
=>AB cắt KN tại trung điểm của mỗi đường
mà M là trung điểm của AB
nên M là trung điểm của KN
=>KN=2MN(2)
Từ (1) và (2) suy ra CN=NK
mà C,N,K thẳng hàng
nên N là trung điểm của CK
c: Xét ΔBAC có
BO là đường trung tuyến ứng với cạnh AC
N là trọng tâm của ΔABC
Do đó: \(BN=\dfrac{2}{3}BO\) và \(ON=\dfrac{1}{3}BO\)
=>\(\dfrac{BN}{NO}=\dfrac{\dfrac{2}{3}BO}{\dfrac{1}{3}BO}=\dfrac{2}{3}:\dfrac{1}{3}=\dfrac{2}{3}\cdot3=2\)
=>BN=2NO
O là trung điểm của BD
=>BO=DO=BD/2
\(BN=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)
\(NO=\dfrac{1}{3}BO=\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{6}BD\)
DO+ON=DN
=>\(\dfrac{1}{2}BD+\dfrac{1}{6}BD=DN\)
=>\(DN=\dfrac{2}{3}BD\)
\(\dfrac{DO}{DN}=\dfrac{\dfrac{1}{2}BD}{\dfrac{2}{3}BD}=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\)
Xét ΔDNC có OE//NC
nên \(\dfrac{DE}{DC}=\dfrac{DO}{DN}=\dfrac{3}{4}\)
a trứng rán cần mỡ bắp cần bơ yêu ko cần cớ cần cậu cơ