K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

AK//BD

N\(\in\)BD

Do đó: AK//BN

Xét ΔMAK và ΔMBN có

\(\widehat{MAK}=\widehat{MBN}\)(hai góc so le trong, AK//BN)

MA=MB

\(\widehat{AMK}=\widehat{BMN}\)

Do đó: ΔMAK=ΔMBN

=>AK=BN

Xét tứ giác AKBN có

AK//BN

AK=BN

Do đó: AKBN là hình bình hành

b: ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường và AC=BD

mà AC cắt BD tại O

nên O là trung điểm chung của AC và BD

Xét ΔBAC có

CM,BO là các đường trung tuyến

CM cắt BO tại N

Do đó: N là trọng tâm của ΔBAC

Xét ΔABC có

N là trọng tâm của ΔBAC

CM là đường trung tuyến ứng với cạnh AB

Do đó: \(CN=2NM\)(1)

Ta có: AKBN là hình bình hành

=>AB cắt KN tại trung điểm của mỗi đường

mà M là trung điểm của AB

nên M là trung điểm của KN

=>KN=2MN(2)

Từ (1) và (2) suy ra CN=NK

mà C,N,K thẳng hàng

nên N là trung điểm của CK

c: Xét ΔBAC có

BO là đường trung tuyến ứng với cạnh AC

N là trọng tâm của ΔABC

Do đó: \(BN=\dfrac{2}{3}BO\) và \(ON=\dfrac{1}{3}BO\)

=>\(\dfrac{BN}{NO}=\dfrac{\dfrac{2}{3}BO}{\dfrac{1}{3}BO}=\dfrac{2}{3}:\dfrac{1}{3}=\dfrac{2}{3}\cdot3=2\)

=>BN=2NO

O là trung điểm của BD

=>BO=DO=BD/2

\(BN=\dfrac{2}{3}BO=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{3}BD\)

\(NO=\dfrac{1}{3}BO=\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot BD=\dfrac{1}{6}BD\)

DO+ON=DN

=>\(\dfrac{1}{2}BD+\dfrac{1}{6}BD=DN\)

=>\(DN=\dfrac{2}{3}BD\)

\(\dfrac{DO}{DN}=\dfrac{\dfrac{1}{2}BD}{\dfrac{2}{3}BD}=\dfrac{1}{2}:\dfrac{2}{3}=\dfrac{3}{4}\)

Xét ΔDNC có OE//NC

nên \(\dfrac{DE}{DC}=\dfrac{DO}{DN}=\dfrac{3}{4}\)

13 tháng 12 2023

Sao góc KMA = góc BMN  vậy ạ

 

19 tháng 12 2023

Có thể vẽ hình cho em được không ạ 

6 tháng 8 2019

tam giác OBE= tam giác ODN

a: ABCD là hình chữ nhật

=>O là trung điểm chug của AC và BD; AC=BD

=>OM=ON

Xét ΔAON và ΔCOM có

OA=OC

góc AON=góc COM

ON=OM

=>ΔAON=ΔCOM

Xet tứ giác ANCM có

O là trung điểm chung của AC và NM

=>ANCM là hình bình hành

b: Xét ΔDMC có OH//MC

nên DO/OM=DH/HC

=>DH/HC=2/1=2

=>DH=2HC

Xét ΔDOH có

N là trung điểm của DO

NE//OH

=>E là trung điểm của DH

=>DE=EH=1/2DH=HC

=>EH=1/3*DC

Xét ΔMFB và ΔMCD có

góc MFB=góc MCD

góc FMB=góc CMD

=>ΔMFB đồng dạng với ΔMCD

=>FB/CD=MB/MD=1/3

=>FB=1/3CD=EH

 

28 tháng 9 2019

a) Ta chứng minh A N = C M A N ∥ C M ⇒ A M C N  là hình bình hành.

Vì O là giao điểm của AC và BD, ABCD là hình chữ nhật nên O là trung điểm AC

Do ANCM là hình bình hành có AC và MN là hai đường chéo

 

⇒  O là trung điểm MN

b. Ta có: EM//AC nên E M D ^ = A C D ^ (2 góc so le trong)

NF//AC nên B N F ^ = B A C ^  (2 góc so le trong)

Mà A C D ^ = B A C ^  (vì AB//DC, tính chất hình chữ nhật)

⇒ E M D ^ = B N F ^

Từ đó chứng minh được  ∆ E D M   =   ∆ F B N   ( g . c . g )

⇒ E M = F N

 

Lại có EM//FN (vì cùng song song với AC)

Nên tứ giác ENFM là hình bình hành

c) Tứ giác ANCM là hình thoi Û AC ^ MN tại O Þ M, N lần lượt là giao điểm của đường thẳng đi qua O, vuông góc AC và cắt CD, AB.

Khi đó M và N là trung điểm của CD và AB.

d) Ta chứng minh được DBOC cân tại O ⇒ O C B ^ = O B C ^   v à   N F B ^ = O C F ^  (đv) Þ DBFI cân tại I Þ IB = IF  (1)

Ta lại chứng minh được DNIB cân tại I Þ IN = IB  (2)

Từ (1) và (2) Þ I là trung điểm của NF.