K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

c/ Ta có BF = FD

=> Tam giác BFD cân tại F

=> \(\widehat{FBD}=\widehat{FDB}=\frac{\widehat{AFB}}{2}=30\)

=> \(\widehat{BDC}=\widehat{ADC}-\widehat{BDF}=120-30=90\left(1\right)\)

Tam giác BME có

BM = BE

\(\widehat{MBE}=60\)

=> Tam giác MBE là tam giác đều

Tam giác MEC cân vì có ME = EC

=> \(\widehat{EMC}=\widehat{MCE}=\frac{\widehat{MEB}}{2}=30\)

=> \(\widehat{BMC}=\widehat{BME}+\widehat{EMC}=60+30=90\left(2\right)\)

Từ (1) và (2) => tứ giác BMCD nội tiếp đường tròn tâm E

Ta lại có \(\widehat{MBD}=\widehat{CBD}+\widehat{MBC}=30+60=90\)

=> DM là đường kính của đường tròn tâm E

=> M,E,D thẳng hàng

28 tháng 11 2016

A D C B E F

a/ Ta có

AF vừa bằng BE vừa // BE nên tứ giác ABEF là hình bình hành

Ta lại có \(AB=AF=\frac{AD}{2}\)

=> Tứ giác ABEF là hình thoi

=> AE vuông góc với BF

b/ Ta có

AB = DC (hai cạnh đối của hình bình hành) (1)

Xét \(\Delta ABF\)có 

\(AB=AF=\frac{AD}{2}\)

\(\widehat{BAF}=60\)

\(\Rightarrow\Delta ABF\)đều

\(\Rightarrow AB=BF\)(2)

Từ (1) và (2) => BF = CD

Và FD // BC

=> Tứ giác BFDC là hình thang cân

c/ Đề thiếu dữ kiện không làm được câu c. Điểm M ở đâu

Sửa câu b/ Thành chứng minh tứ giác BFDC là hình thang can

10 tháng 8 2016

a) tứ giác ABEF là hình thoi

=>đpcm

b) theo câu a

c)Hình thoi

d)Tam giác ABD có

AB=1/2AD và BAD =60

=>tam giác ABD là nữa tam giác đều

=>ABD=90

=>MBD=90

Mặt khác BM=AB=CD

BM song song với CD

=>đpcm

e) vì E là trung điểm của BC

và từ giác MBDC là hình chữ nhật

=>E là giao điểm của MD và BC

=>đpcm

1.Cho hình bình hành ABCD,P là điểm bất kì trên AB.M,N làn lượt là trung điểm của AD,BC.Gọi các điểm đối xứng của P qua MN lần lượt là E,F.Chứng minh:a.E,F,C,D thẳng hàngb.EF có độ dài không đổi2.Cho tam giác ABC,vẽ D đối xứng với a qua B,E đối xứng với B qua C,F đối xứng với C qua A.G là giao điểm của trung tuyến AM của tam giác ABC với trung tuyến DN của tam giác DEF.I,K lần lượt là trung...
Đọc tiếp

1.Cho hình bình hành ABCD,P là điểm bất kì trên AB.M,N làn lượt là trung điểm của AD,BC.Gọi các điểm đối xứng của P qua MN lần lượt là E,F.Chứng minh:

a.E,F,C,D thẳng hàng

b.EF có độ dài không đổi

2.Cho tam giác ABC,vẽ D đối xứng với a qua B,E đối xứng với B qua C,F đối xứng với C qua A.G là giao điểm của trung tuyến AM của tam giác ABC với trung tuyến DN của tam giác DEF.I,K lần lượt là trung điểm của GA,GD.Chứng minh:
a.Tứ giác MNIK là hình bình hành

b.Trọng tâm tam giác ABC và tam giác DÈ trùng nhau

3.Tính độ dài đường trung tuyến AM của tam giác ABC biết góc A=120 độ;AB=6 cm;AC=8 cm

4.tam giác ABC,đường cao BH;CK cắt nhau tại E.Qua B kẻ Bx vuông góc với AB.Qua C kẻ Cy vuông góc với AC,Bx cắt Cy tại D

a.BDCE là hình gì?Vì sao?

b.Gọi M là trung điểm của ED.chứng minh E,M,D thẳng hàng

c.Tam giác ABC thỏa mãn điều kiện gì để A,E,M thẳng hàng

CÁC BẠN GIÚP MÌNH VỚI NHAA,MÌNH CẢM ƠN NHIỀU NHIỀU!!!

1
5 tháng 1 2017

Ui ,Khó thật!

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
3 tháng 5 2018

b. Do tứ giác MDBE nội tiếp (cmt) => \(\widehat{MBE}=\widehat{MBC}=\widehat{MDE}=\frac{1}{2}sđ\widebat{MC}\)(1)

Vì MD \(\perp\)AB tại D (gt) => \(\widehat{MDA}=90^o\)

MF \(\perp\)AC tại F (gt) => \(\widehat{MFA}=90^o\)

Xét tứ giác ADMF có: \(\widehat{MDA}+\widehat{MFA}=90^o+90^o=180^o\)=> tứ giác ADMF nội tiếp (dhnb)

=> \(\widehat{MDF}=\widehat{MAF}=\widehat{MAC}=\frac{1}{2}sđ\widebat{MC}\)(2)

Từ (1) và (2) => \(\widehat{MDE}=\widehat{MDF}\)=> D, E, F thẳng hàng (2 góc có cùng số đo, có 1 cạnh chung, 2 cạnh còn lại của 2 góc cùng nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau)

* Ta có: tứ giác MEFC nội tiếp (cmt) => \(\widehat{EFM}=\widehat{ECM}=\frac{1}{2}sđ\widebat{EM}\)\(\Leftrightarrow\widehat{DFM}=\widehat{BCM}\)(3)

tứ giác MDBE nội tiếp (cmt) => \(\widehat{MDE}=\widehat{MBE}=\frac{1}{2}sđ\widebat{ME}\)\(\Leftrightarrow\widehat{MDF}=\widehat{MBC}\)(4)

Từ (3) và (4) => \(\Delta MDF\)đồng dạng với \(\Delta MBC\)(g.g) => \(\frac{MD}{MB}=\frac{MF}{MC}\Leftrightarrow MB\times MF=MD\times MC\)(đpcm)

c. Nối A với M, B với M 

Ta có: \(\widehat{AMB}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(5)

Do tứ giác MEFC nội tiếp => \(\widehat{FME}=\widehat{FCE}=\frac{1}{2}sđ\widebat{EF}=\widehat{ACB}=\frac{1}{2}sđ\widebat{AB}\)(6)

Từ (5) và (6) => \(\widehat{AMB}=\widehat{FME}\)(7)

lại có: tứ giác ADMF nội tiếp (cmt) => \(\widehat{MAD}=\widehat{MFD}=\frac{1}{2}sđ\widebat{MD}\Leftrightarrow\widehat{MAB}=\widehat{MFE}\)(8)

từ (7) và (8) => \(\Delta ABM\)đồng dạng với \(\Delta FEM\)(g.g) => \(\frac{AB}{FE}=\frac{AM}{FM}\Leftrightarrow\frac{AB}{AM}=\frac{FE}{FM}\Leftrightarrow\frac{2\times AI}{AM}=\frac{2\times FK}{FM}\Leftrightarrow\frac{AI}{AM}=\frac{FK}{FM}\)(9)

Lại có: \(\widehat{MAD}=\widehat{MFD}\)(CMT) => \(\widehat{MAI}=\widehat{MFK}\)(10)

Từ (9) và (10) => \(\Delta MAI\)đồng dạng với \(\Delta MFK\)(c.g.c) => \(\widehat{IMA}=\widehat{KMF}\)(11)

Ta có: \(\widehat{MID}\)là góc ngoài tại đỉnh I của \(\Delta MAI\)=> \(\widehat{MID}=\widehat{MAI}+\widehat{IMA}\)

Tương tự: \(\widehat{MKD}\)là góc ngoài tại đỉnh K của \(\Delta MFK\)=> \(\widehat{MKD}=\widehat{MFK}+\widehat{KMF}\)

Từ (10) và (11) => \(\widehat{MID}=\widehat{MKD}\)=> Tứ giác MDIK là tứ giác nội tiếp (DHNB) => \(\widehat{IDM}+\widehat{IKM}=180^o\)(Hệ quả)

Mà \(\widehat{IDM}=\widehat{ADM}=90^o\)=> \(\widehat{IKM}=90^o\)<=> MK vuông góc với KI (ĐPCM)