\(x^2+y^4...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2020

Từ điều kiện đề bài ta có:

\(x^2,y^2,z^2\le1\)

Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)

\(\Rightarrow xy\ge0\)

Ta có:

\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)

Dấu = xảy ra khi x = 0; y = 1; z = - 1.

7 tháng 2 2020

\(x+y+z=0.\)

\(\Rightarrow x+y=-z.\)

Ta có:

\(-1\le x\le1;-1\le y\le1;-1\le z\le1.\)

\(\Leftrightarrow x^2;y^2;z^2\le1\)

Trong 3 số x ; y ; z có ít nhất 2 số cùng dấu (giả sử là x ; y). Ta có:

\(xy\ge0\)

\(\Rightarrow2xy\ge0\)

Có:

\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\)

\(\Rightarrow x^2+y^4+z^6\le x^2+y^2+z^2\) (1).

Ta phải chứng minh \(x^2+y^2+z^2\le2.\)

Có:

\(x^2+y^2+z^2\le x^2+y^2+z^2+2xy.\)

\(\Rightarrow x^2+y^2+z^2\le\left(x+y\right).2+z^2\)

\(\Rightarrow x^2+y^2+z^2\le\left(-z\right).2+z^2\)

\(\Rightarrow x^2+y^2+z^2\le2z^2\le2\) (2).

Từ (1) và (2) \(\Rightarrow x^2+y^4+z^6\le2\left(đpcm\right).\)

Chúc em học tốt!

5 tháng 2 2018

Từ điều kiện đề bài ta có:

\(x^2,y^2,z^2\le1\)

Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)

\(\Rightarrow xy\ge0\)

Ta có:

\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)

11 tháng 2 2018

không biết liệu dấu đẳng thức có xẩy ra không nhỉ

Ai giải trước mk mỗi ngày 3 cái . k hết 7 ngày nha 

11 tháng 2 2020

vào câu hỏi tương tự có lẽ sẽ gợi cho bn ý tưởng để làm bài này đó

chúc học tốt !

26 tháng 12 2017

đáp án https://goo.gl/BjYiDy

13 tháng 7 2017

Ta có :

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}=\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(x+z\right)}\)

\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)

Từ \(z\left(x+y\right)=x\left(y+z\right)\Leftrightarrow xz+yz=xy+xz\Leftrightarrow yz=xy\Rightarrow x=z\) (1)

Từ \(x\left(y+z\right)=y\left(x+z\right)\Leftrightarrow xy+xz=xy+yz\Leftrightarrow xz=yz\Rightarrow x=y\) (2)

Từ \(z\left(x+y\right)=y\left(z+x\right)\Leftrightarrow xz+yz=yz+xy\Leftrightarrow xz=xy\Rightarrow z=y\) (3)

Từ (1) ; (2) ; (3) \(\Rightarrow x=y=z\) (đpcm)

24 tháng 5 2016

a) 

  1. Với x = 0 => y = 0 => z=0 

=> x = y = z = 0

     2.Với x , y , z khác 0

Từ \(x^2=yz\)\(\Rightarrow\)\(x^3=xyz\)

\(y^2=xz\Rightarrow y^3=xyz\)

\(z^2=xy\Rightarrow z^3=xyz\)

Do đó : \(x^3=y^3=z^3\Rightarrow x=y=z\)

b)

\(x-x^2-1=-\left(x+\frac{1}{2}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

15 tháng 2 2017

ơ lạ ~ vì x;y;z đều là số dương nên x2<x5;y3<y6;z4<z7 cộng lại x2+y3+z4<x5+y6+zchứ, sao lại cho cái vế phải nhỏ hơn vế trái vậy???

15 tháng 2 2017

đề cho là số thực mà

26 tháng 3 2019

Do \(x+y+z=0;-1\le x,y,z\le1\)

Suy ra : Trong 3 số x,y,z tồn tại hai số cùng dấu

Giả sử : \(x\ge0;y\ge0;z\le0\)

Từ : \(x+y+z=0\)\(\Rightarrow z=-x-y\)

\(x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=x+y-z=-2z\)

\(\Rightarrow x^2+y^4+z^6\le-2z\le2\)

Vậy : \(x^2+y^4+z^6\le2\)