K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

7 tháng 2 2020

Từ điều kiện đề bài ta có:

\(x^2,y^2,z^2\le1\)

Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)

\(\Rightarrow xy\ge0\)

Ta có:

\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)

Dấu = xảy ra khi x = 0; y = 1; z = - 1.

7 tháng 2 2020

\(x+y+z=0.\)

\(\Rightarrow x+y=-z.\)

Ta có:

\(-1\le x\le1;-1\le y\le1;-1\le z\le1.\)

\(\Leftrightarrow x^2;y^2;z^2\le1\)

Trong 3 số x ; y ; z có ít nhất 2 số cùng dấu (giả sử là x ; y). Ta có:

\(xy\ge0\)

\(\Rightarrow2xy\ge0\)

Có:

\(x^2+y^4+z^6=x^2+y^2.y^2+z^2.z^2.z^2\)

\(\Rightarrow x^2+y^4+z^6\le x^2+y^2+z^2\) (1).

Ta phải chứng minh \(x^2+y^2+z^2\le2.\)

Có:

\(x^2+y^2+z^2\le x^2+y^2+z^2+2xy.\)

\(\Rightarrow x^2+y^2+z^2\le\left(x+y\right).2+z^2\)

\(\Rightarrow x^2+y^2+z^2\le\left(-z\right).2+z^2\)

\(\Rightarrow x^2+y^2+z^2\le2z^2\le2\) (2).

Từ (1) và (2) \(\Rightarrow x^2+y^4+z^6\le2\left(đpcm\right).\)

Chúc em học tốt!

NV
13 tháng 1

Chứng minh biểu thức thế nào em?

13 tháng 1

e vt thiếu , biểu thức có giá trị nguyên ạ

5 tháng 2 2018

Từ điều kiện đề bài ta có:

\(x^2,y^2,z^2\le1\)

Trong 3 số x, y, z có 2 số cùng dấu: Giả sử là x,y (các trường hợp khác làm tương tự)

\(\Rightarrow xy\ge0\)

Ta có:

\(x^2+y^4+z^6\le x^2+y^2+z^2\le z^2+\left(x^2+2xy+y^2\right)=2z^2\le2\)

11 tháng 2 2018

không biết liệu dấu đẳng thức có xẩy ra không nhỉ

13 tháng 7 2017

Ta có :

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}=\frac{xyz}{z\left(x+y\right)}=\frac{xyz}{x\left(y+z\right)}=\frac{xyz}{y\left(x+z\right)}\)

\(\Rightarrow z\left(x+y\right)=x\left(y+z\right)=y\left(z+x\right)\)

Từ \(z\left(x+y\right)=x\left(y+z\right)\Leftrightarrow xz+yz=xy+xz\Leftrightarrow yz=xy\Rightarrow x=z\) (1)

Từ \(x\left(y+z\right)=y\left(x+z\right)\Leftrightarrow xy+xz=xy+yz\Leftrightarrow xz=yz\Rightarrow x=y\) (2)

Từ \(z\left(x+y\right)=y\left(z+x\right)\Leftrightarrow xz+yz=yz+xy\Leftrightarrow xz=xy\Rightarrow z=y\) (3)

Từ (1) ; (2) ; (3) \(\Rightarrow x=y=z\) (đpcm)