K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

cm sao bạn 

5 tháng 10 2018

=<3/4

15 tháng 5 2017

Áp dụng BĐT AM-GM ta có: 

\(a^4+bc\ge2\sqrt{a^4bc}=2a^2\sqrt{bc}\Rightarrow\frac{a^2}{a^4+bc}\le\frac{a^2}{2a^2\sqrt{bc}}\)\(=\frac{1}{2\sqrt{bc}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ac}}\). Theo AM-GM có

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\) thì

\(M\le\frac{1}{2\sqrt{ab}}+\frac{1}{2\sqrt{bc}}+\frac{1}{2\sqrt{ca}}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{1}{2}\cdot\frac{ab+bc+ca}{abc}\le\frac{1}{2}\cdot\frac{a^2+b^2+c^2}{abc}=\frac{1}{2}\cdot3=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=1\)

15 tháng 5 2017

từ GT suy ra abc >=1 và a/bc + b/ca + c/ab = 3.

áp dụng BĐT Cauchy : a4 + bc >=2a2v(bc) (v(bc) là căn bc).

nên a2/a4 + bc <=1/2v(bc).

do đó M <= 1/2.(1/v(bc) + 1/v(ca) + 1/v(ab).

ta chứng minh N = (1/v(bc) + 1/v(ca) + 1/v(ab) <=3 là xong.

thật vậy.

giả sử a <=b<=c nên 1/v(bc) <= 1/v(ca)<= 1/v(ab).

áp dụng BĐT Trê bư sep ta được (v(a) + v(b) + v(c))/3 . ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= (v(a)/v(bc) + v(b)/v(ca) + v(c)/v(ab)/3.

ta có v(a) + v(b) + v(c) >=3 căn6(abc)>=3.

nên VT >=((1/v(bc) + 1/v(ca) + 1/v(ab))/3. (1)

lại có (x + y + z)2 <=3(x2 + y2 + z2) nên (VP)2 <= (a/bc + b/ca + c/ab)/3= 1.

hay VP <= 1 (2).

từ (1) và (2) suy ra ((1/v(bc) + 1/v(ca) + 1/v(ab))/3 <= 1 hay

(1/v(bc) + 1/v(ca) + 1/v(ab) <= 3

tức N <= 3 (đpcm).

(mình chưa biết đánh nên cố đọc nhé!)

3 tháng 6 2020

Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)

\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)

\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)

\(\ge\text{​​}\Sigma\text{​​}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)

\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)

\(=2+ab+bc+ca\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

5 tháng 10 2018

\(\dfrac{3}{4}\)

24 tháng 5 2016

bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh

10 tháng 3 2020

\(VT-VP=\frac{\left(2bc+3a-5\right)^2}{3}+\frac{\left(6c+1\right)\left(c-1\right)^2}{2c+3}-\frac{\left(2bc+3b-5\right)^2\left(2c-3\right)}{3\left(2c+3\right)}\)

\(=\frac{\left(3a+3b-5\right)^2}{3}+\frac{\left(3c-5\right)^2}{3}+\frac{1}{3}+2ab\left(2c-3\right)\)

Từ 2 đẳng thức trên suy ra đpcm. (cái đầu đúng cho \(c\le\frac{3}{2}\), cái sau cho \(c\ge\frac{3}{2}\))

Và ta có thể viết SOS cho bài trên! Cách viết dựa trên dao lam, mời các bạn:)

10 tháng 3 2020

Vì a + b + c = 3 nên theo nguyên lí Dirichlet: Tồn tại ít nhất hai số đồng thời không bé hơn 1 hoặc đồng thời không lớn hơn 1

Không mất tính tổng quát có thể g/s hai số đó là a và b

Khi đó ta có: \(\left(a-1\right)\left(b-1\right)\ge0\)

<=> \(ab\ge a+b-1\)

<=> \(abc\ge ac+bc-c=ac+bc+c^2-c^2-c=c\left(a+b+c\right)-c^2-c=2c-c^2\)

Khi đó: \(3\left(a^2+b^2+c^2\right)+4abc\ge\frac{3\left(a+b\right)^2}{2}+3c^2+8c-4c^2=\frac{3\left(3-c\right)^2}{2}-c^2+8c\)

\(=\frac{1}{2}c^2-c+\frac{27}{2}=\frac{1}{2}\left(c^2-2c+1\right)-\frac{1}{2}+\frac{27}{2}=\frac{7}{2}\left(c-1\right)^2+13\ge13\)

Dấu "=" xảy ra <=> a = b = c = 1/