Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>BE\(\perp\)AM
Xét (O) có
ΔAFB nội tiếp
AB là đường kính
Do đó: ΔAFB vuông tại F
=>BF\(\perp\)AN
Xét ΔABM vuông tại B có BE là đường cao
nên \(AE\cdot MA=AB^2\left(1\right)\)
Xét ΔABN vuông tại B có BF là đường cao
nên \(AF\cdot AN=AB^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AM=AF\cdot AN\)
Vẽ OP ⊥ CA; O’Q ⊥ AD suy ra tứ giác OPQO’ là hình thang vuông tại P, Q
a, Kẻ OP; O’Q ⊥ CD do CD ⊥ MA và M là trung điểm của OO’ => AP=AQ => AC=AD
b,i, Chú ý ∆EAF có AB, EG,FI là ba đường cao
ii, Sử dụng CD= 2PQ để lập luận, ta có
Kết luận: CD lớn nhất khi CD//OO’
5 + 5 = 10 (tuổi)
Số tuổi con kém cha không bao giờ thay đổi. Ta có sơ đồ khi tuổi cha gấp 3 lần tuổi con:
Cha: l------l------l------l
Con: l------l
Hiệu số phần bằng nhau là:
3 - 1 = 2 (phần)
Giá trị 1 phần hay tuổi con khi đó là:
32 : 2 x 1 = 16 (tuổi)
Vậy tuổi cha gấp 3 lần tuổi con sau số năm là:
16 - 10 = 6 (năm)
Đáp số: 6 năm
Báo cáo sai phạm
Gọi tuổi con lúc cha gấp 3 tuổi con là x ( x thuộc N*)
thì tuổi cha lúc đó là x + 32
theo đề ta có
3x = x + 32
<=> 2x = 32
<=> x = 16
=> lúc cha gấp 3 tuổi con , con 16 t
Vậy 6 năm sau tuổi cha gấp 3 lần tuổi con
Báo cáo sai phạm
mik ghi kq thui:4 năm
~~~~~~~~
^_^
Báo cáo sai phạm
4 năm nữa bạn ơi