K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

...............anh quên bài lớp 5 rồi xin lỗi em

3 tháng 12 2018

e quy đồng ra nháp rồi cộng các số phù hợp là ra kết quả

a) = \(\frac{127}{96}\)

b) = \(\frac{255}{256}\)

c) Mik bỏ nha

d) = \(\frac{1023}{512}\)

e) = \(\frac{2343}{625}\)

10 tháng 8 2017

bạn có thể trả lời rõ ra được ko

22 tháng 10 2020

bài 1 tính nhanh

mik xin sửa đề câu a thành thế này ~

\(a,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)

 \(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) 

\(A\cdot2-A=\) (  \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) )  - (  \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\) )

\(A=1-\frac{1}{256}\)

\(A=\frac{255}{256}\)

\(b,\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

đặt \(B=\) \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) 

     \(B\cdot3=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)

\(B\cdot3-B=\)  ( \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) ) 

\(B\cdot2=\) \(1-\frac{1}{729}\)

\(B\cdot2=\frac{728}{729}\)

\(B=\frac{728}{729}:2\)

\(B=\frac{364}{729}\) 

\(c,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

ĐẶT \(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)

    \(C=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)

\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(C=\frac{1}{1}-\frac{1}{6}\)

\(C=\frac{5}{6}\)

15 tháng 11 2020

Cảm ơn bạn nhé

2 tháng 7 2019

Bài 1:

2 tháng 7 2019

Bài 1: 1/3+1/9+1/27+1/81+1/243+1/729

Đặt:
A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Nhân A với 3 ta có:
\(Ax3=3+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow Ax3-S=3-\frac{1}{243}\)
\(\Rightarrow2A=\frac{2186}{729}\)
\(\Rightarrow A=\frac{2186}{729}:2\)
\(\Rightarrow A=\frac{1093}{729}\)

24 tháng 7 2015

giup minh voi 

 

9 tháng 11 2017

Ta có: \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(\Rightarrow B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}\)

\(\Rightarrow3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^4}+\frac{1}{3^5}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+\frac{1}{3^5}+\frac{1}{3^6}\right)\)

\(\Rightarrow2B=1-\frac{1}{3^6}\)

\(\Rightarrow B=\frac{1-\frac{1}{3^6}}{2}\)

17 tháng 10 2021

F*** you bich

1 tháng 12 2023

😵

1 tháng 12 2023

           A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)

     2 \(\times\) A = 1   + \(\dfrac{1}{2}\) +  \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)

 2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))

        A      = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)

        A       =  1 - \(\dfrac{1}{32}\)

        A       =   \(\dfrac{31}{32}\)

\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2048}\)

\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+...+\left(\frac{1}{1024}-\frac{1}{2048}\right)\)

\(A=1-\frac{1}{2048}\)

\(\Rightarrow\)\(A=\frac{2047}{2048}\)

\(3B=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)

\(3B-B=1-\frac{1}{2187}\)

\(2B=\frac{2186}{2187}\)

\(\Rightarrow B=\frac{2186}{4374}=\frac{1093}{2187}\)