Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right).\dfrac{x-4}{10\sqrt{x}-2x}\left(x>0,x\ne4,x\ne25\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{x-4}+\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{x-4}\right].\dfrac{x-4}{10\sqrt{x}-2x}\)
\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}.\dfrac{x-4}{10\sqrt{x}-2x}\)
\(=\dfrac{2x}{x-4}.\dfrac{x-4}{2\sqrt{x}\left(5-\sqrt{x}\right)}\)
\(=\dfrac{\sqrt{x}}{5-\sqrt{x}}\)
\(b.\) Thay \(x=\dfrac{1}{4}\) vào P, ta được:
\(\dfrac{\sqrt{\dfrac{1}{4}}}{5-\sqrt{\dfrac{1}{4}}}=\dfrac{0,5}{5-0,5}=\dfrac{1}{9}\)
Vậy ......................
\(c.P< -1\)
\(\Leftrightarrow\dfrac{\sqrt{x}}{5-\sqrt{x}}< -1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+5-\sqrt{x}}{5-\sqrt{x}}< 0\)
\(\Leftrightarrow\dfrac{5}{5-\sqrt{x}}< 0\)
\(\Leftrightarrow5-\sqrt{x}< 0\)
\(\Leftrightarrow\sqrt{x}>5\)
\(\Leftrightarrow x>25\left(tm\right)\)
Vậy ...................
A nhỏ nhất khi \(\sqrt{x}-x\) lớn nhất ta có
\(\sqrt{x}-x=-\left(x-2.\frac{1}{2}\sqrt{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
Dấu bằng xảy ra khi x=1/4
Vậy min A = 4 khi và chỉ khi x=1/4
Bài 1
***\(y=-x\)
Cho \(x=0\Rightarrow y=0\)
\(x=-1\Rightarrow y=1\)
Đồ thị hàm số \(y=-x\)là đường thẳng đi qua hai điểm \(\left(0,0\right);\left(-1;1\right)\)
*** \(y=\frac{1}{2}x\)
Cho \(x=0\Rightarrow y=0\)
\(x=2\Rightarrow y=1\)
Đồ thị hàm số \(y=\frac{1}{2}x\)là đường thẳng đi qua 2 điểm \(\left(0;0\right)\left(2;1\right)\)
*** \(y=2x+1\)
Cho \(x=0\Rightarrow y=1\)
\(y=-1\Rightarrow x=-1\)
Đồ thị hàm số \(y=2x+1\)là đường thẳng đi qua 2 điểm \(\left(0;1\right)\left(-1;-1\right)\)
Bài 2
a, \(P=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{x-16}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-4}-\frac{4}{\sqrt{x}+4}-\frac{8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+4\right)-4\left(\sqrt{x}-4\right)-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x+4\sqrt{x}-4\sqrt{x}+16-8\sqrt{x}}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x-8\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{x-4\sqrt{x}-4\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-4\right)-4\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\left(\sqrt{x}-4\right)\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\)
\(=\frac{\sqrt{x}-4}{\sqrt{x}+4}\)
b, Với x = 25
\(\Rightarrow P=\frac{\sqrt{25}-4}{\sqrt{25}+4}=\frac{5-4}{5+4}=\frac{1}{9}\)
c, \(P=\frac{\sqrt{x}-4}{\sqrt{x}+4}=1-\frac{8}{\sqrt{x}+4}\)
Để P thuộc Z thì \(\sqrt{x}+4\inƯ\left(8\right)=\left(-8;-4-2;-1;1;2;4;8\right)\)
\(\sqrt{x}+4=-8\Rightarrow\sqrt{x}=-12VN\)
\(\sqrt{x}+4=-4\Rightarrow\sqrt{x}=-8VN\)
\(\sqrt{x}+4=-2\Rightarrow\sqrt{x}=-6VN\)
\(\sqrt{x}+4=-1\Rightarrow\sqrt{x}=-5VN\)
\(\sqrt{x}+4=1\Rightarrow\sqrt{x}=-3VN\)
\(\sqrt{x}+4=2\Rightarrow\sqrt{x}=-2VN\)
\(\sqrt{x}+4=4\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
\(\sqrt{x}+4=8\Rightarrow\sqrt{x}=4\Rightarrow x=16\)
d, Để P nhỏ nhất thì \(\frac{8}{\sqrt{x}+4}\)lớn nhất
\(\frac{8}{\sqrt{x}+4}\)lớn nhất khi \(\sqrt{x}+4\)nhỏ nhất '
\(\sqrt{x}+4\)nhỏ nhất = 4 khi x = 0
vậy x=0 thì P đạt giá trị nhỉ nhất min p = -1
bạn có thể dùng bđt phụ này để chứng minh
\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)