K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2023

A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) ;  B = \(\dfrac{2020+2021}{2021+2022}\)

B = \(\dfrac{2020+2021}{2021+2022}\)   = \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\)

\(\dfrac{2020}{2021}\)   > \(\dfrac{2020}{2021+2022}\)

\(\dfrac{2021}{2022}\)     > \(\dfrac{2021}{2021+2022}\)

Cộng vế với vế ta có:

A = \(\dfrac{2020}{2021}\) + \(\dfrac{2021}{2022}\) > \(\dfrac{2020}{2021+2022}\) + \(\dfrac{2021}{2021+2022}\) = B

Vậy A > B

 

15 tháng 4 2023

A =  \(\dfrac{10^{10}-1}{10^{11}-1}\) 

\(\times\) 10 = \(\dfrac{(10^{10}-1)\times10}{10^{11}-1}\) = \(\dfrac{10^{11}-10}{10^{11}-1}\) = 1 - \(\dfrac{9}{10^{11}-1}\) < 1

B = \(\dfrac{10^{10}+1}{10^{11}+1}\)

\(\times\) 10 = \(\dfrac{(10^{10}+1)\times10}{10^{11}+1}\)  = \(\dfrac{10^{11}+10}{10^{11}+1}\) = 1 + \(\dfrac{9}{10^{11}+1}\) > 1

Vì 10 A< 1< 10B

Vậy A < B

 

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

24 tháng 4 2022

Ta có: 202220212+k202220212202220212+k≤202220212 (với kklà số tự nhiên bất kì) 

Ta có: 

A=202220212+1+202220212+2+...+202220212+2021A=202220212+1+202220212+2+...+202220212+2021

202220212+202220212+...+202220212=202220212.2021=20222021≤202220212+202220212+...+202220212=202220212.2021=20222021

Ta có: 202220212+k>202220212+2021=20222021.2022=12021202220212+k>202220212+2021=20222021.2022=12021với kktự nhiên, k<2021k<2021

Suy ra A=202220212+1+202220212+2+...+202220212+2021A=202220212+1+202220212+2+...+202220212+2021

>12021+12021+...+12021=20212021=1>12021+12021+...+12021=20212021=1

Suy ra 1<A202220211<A≤20222021do đó AAkhông phải là số tự nhiên. 

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

DD
18 tháng 3 2022

Ta có: \(\frac{2022}{2021^2+k}\le\frac{2022}{2021^2}\) (với \(k\)là số tự nhiên bất kì) 

Ta có: 

\(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(\le\frac{2022}{2021^2}+\frac{2022}{2021^2}+...+\frac{2022}{2021^2}=\frac{2022}{2021^2}.2021=\frac{2022}{2021}\)

Ta có: \(\frac{2022}{2021^2+k}>\frac{2022}{2021^2+2021}=\frac{2022}{2021.2022}=\frac{1}{2021}\)với \(k\)tự nhiên, \(k< 2021\)

Suy ra \(A=\frac{2022}{2021^2+1}+\frac{2022}{2021^2+2}+...+\frac{2022}{2021^2+2021}\)

\(>\frac{1}{2021}+\frac{1}{2021}+...+\frac{1}{2021}=\frac{2021}{2021}=1\)

Suy ra \(1< A\le\frac{2022}{2021}\)do đó \(A\)không phải là số tự nhiên. 

26 tháng 11 2023

a:

Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)

Từ 1 đến 2025 sẽ có:

\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)

Ta có: 1-3=5-7=...=2021-2023=-2

=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này

=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)

b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)

Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)

Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4

=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này

=>\(S=506\cdot\left(-4\right)=-2024\)