K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

\(P=\left(\frac{1}{x+1}+\frac{1}{x-1}\right):\frac{2x}{x-1}\)

a) Điều kiện xác định:

\(\hept{\begin{cases}x+1\ne0\\x-1\ne0\\2x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne0-1\\x\ne0+1\\x\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne-1\\x\ne1\\x\ne0\end{cases}}\)

Vậy để P có nghĩa thì \(x\ne-1;x\ne1\)\(x\ne0.\)

b) Rút gọn:

\(P=\left(\frac{1}{x+1}+\frac{1}{x-1}\right):\frac{2x}{x-1}\)

\(P=\left(\frac{1.\left(x-1\right)}{\left(x-1\right).\left(x+1\right)}+\frac{1.\left(x+1\right)}{\left(x-1\right).\left(x+1\right)}\right):\frac{2x}{x-1}\)

\(P=\left(\frac{x-1}{\left(x-1\right).\left(x+1\right)}+\frac{x+1}{\left(x-1\right).\left(x+1\right)}\right):\frac{2x}{x-1}\)

\(P=\left(\frac{x-1+x+1}{\left(x-1\right).\left(x+1\right)}\right):\frac{2x}{x-1}\)

\(P=\frac{2x}{\left(x-1\right).\left(x+1\right)}:\frac{2x}{x-1}\)

\(P=\frac{2x}{\left(x-1\right).\left(x+1\right)}.\frac{x-1}{2x}\)

\(P=\frac{2x.\left(x-1\right)}{2x.\left(x-1\right).\left(x+1\right)}\)

\(P=\frac{1}{x+1}.\)

6 tháng 8 2020

\(A=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\left(đk:x\ne1;x\ge0\right)\)

\(=x-2\sqrt{x}+1+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}\)

\(=1-2\sqrt{x}+\frac{x^2+x+1}{x-\sqrt{x}+1}\)

\(=1+\frac{x^2+3x+1-2x\sqrt{x}-2\sqrt{x}}{x-\sqrt{x}+1}\)

\(=\frac{x-\sqrt{x}+1+x^2+3x+1-2x\sqrt{x}-2\sqrt{x}}{x-\sqrt{x}+1}\)

\(=\frac{x^2+4x-3\sqrt{x}-2x\sqrt{x}+2}{x-\sqrt{x}+1}\)

bạn thử chia đa thức cho đa thức xem

a: Sửa đề: \(P=\left(\dfrac{x}{2x-2}+\dfrac{3-x}{2x^2-2}\right):\left(\dfrac{x+1}{x^2+x+1}+\dfrac{x+2}{x^3-1}\right)\)\(P=\left(\dfrac{x}{2\left(x-1\right)}+\dfrac{3-x}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{\left(x+1\right)\left(x-1\right)+x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x\left(x+1\right)+3-x}{2\left(x-1\right)\left(x+1\right)}:\dfrac{x^2-1+x+2}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(=\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x^2+x+1}\)

\(=\dfrac{x^2+3}{2\left(x+1\right)}\)

b: P=3

=>x^2+3=6(x+1)=6x+6

=>x^2-6x-3=0

=>\(x=3\pm2\sqrt{3}\)

c: P>4

=>P-4>0

=>\(\dfrac{x^2+3-8\left(x+1\right)}{2\left(x+1\right)}>0\)

=>\(\dfrac{x^2-8x-5}{x+1}>0\)

TH1: x^2-8x-5>0 và x+1>0

=>x>-1 và (x<4-căn 21 hoặc x>4+căn 21)

=>-1<x<4-căn 21 hoặc x>4+căn 21

Th2: x^2-8x-5<0 và x+1<0

=>x<-1 và (4-căn 21<x<4+căn 21)

=>Vô lý

31 tháng 7 2023

phép nhân đổi thành phép chia 

22 tháng 9 2019

a) ĐKXD : \(x\ge0;x\ne1\)

b)\(A=\left(1+\frac{\sqrt{x}}{x+1}\right):\frac{x\sqrt{x}-1}{\sqrt{x}-1}\)

\(A=\frac{\left(x+1+\sqrt{x}\right).\left(\sqrt{x}-1\right)}{\left(x+1\right).\left(x\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x^3}-1}{\left(x+1\right).\left(\sqrt{x^3}-1\right)}\)

\(A=\frac{1}{x+1}\)

c) \(A=\frac{1}{5}\Rightarrow\frac{1}{x+1}=\frac{1}{5}\)

\(\Rightarrow x+1=5\)

\(\Rightarrow x=4\)

27 tháng 7 2017

a/ \(\hept{\begin{cases}\sqrt{x}+1\ne0\\\sqrt{x}-1\ne0\\x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}\ne-1\\\sqrt{x}\ne1\\x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)

b/ Đặt nhân tử rồi rút thôi

27 tháng 7 2017

A, x co the=0

A=2

a: ĐKXĐ: x>1; x<>2

b: \(P=\left(\dfrac{\sqrt{x}+\sqrt{x-1}}{x-x+1}-\sqrt{x-1}-\sqrt{2}\right)\cdot\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(\sqrt{2}-\sqrt{x}\right)}\)

\(=\left(\sqrt{x}-\sqrt{2}\right)\cdot\dfrac{\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\dfrac{-\sqrt{x}+\sqrt{2}}{\sqrt{x}}\)

c: Khi x=3+2căn 2 thì

P=(-căn 2-1+căn 2)/(căn 2+1)=căn 2-1