\(\frac{x+\sqrt{x}}{\sqrt{x}+1}+\frac{x-\sqrt{x}}{\sqrt{x}-1}\)

a. Tìm x để A có...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

a/ \(\hept{\begin{cases}\sqrt{x}+1\ne0\\\sqrt{x}-1\ne0\\x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x}\ne-1\\\sqrt{x}\ne1\\x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)

b/ Đặt nhân tử rồi rút thôi

27 tháng 7 2017

A, x co the=0

A=2

23 tháng 5 2019

\(A=\frac{1}{\sqrt{x-1}-\sqrt{x}}+\frac{1}{\sqrt{x-1}+\sqrt{x}}+\frac{\sqrt{x^3}-x}{\sqrt{x}-1}\) \(ĐKXĐ:x\ne\pm1\)

\(=\frac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{\left(\sqrt{x-1}-\sqrt{x}\right)\left(\sqrt{x-1}+\sqrt{x}\right)}+\frac{x\sqrt{x}-x}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x-1}}{x-1-x}+\frac{x\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=x-2\sqrt{x-1}\)

Câu c mình ko làm được

22 tháng 9 2019

a) ĐKXD : \(x\ge0;x\ne1\)

b)\(A=\left(1+\frac{\sqrt{x}}{x+1}\right):\frac{x\sqrt{x}-1}{\sqrt{x}-1}\)

\(A=\frac{\left(x+1+\sqrt{x}\right).\left(\sqrt{x}-1\right)}{\left(x+1\right).\left(x\sqrt{x}-1\right)}\)

\(A=\frac{\sqrt{x^3}-1}{\left(x+1\right).\left(\sqrt{x^3}-1\right)}\)

\(A=\frac{1}{x+1}\)

c) \(A=\frac{1}{5}\Rightarrow\frac{1}{x+1}=\frac{1}{5}\)

\(\Rightarrow x+1=5\)

\(\Rightarrow x=4\)

1 tháng 9 2019

\(a,ĐKXĐ:\hept{\begin{cases}x^2-\sqrt{x}\ne0\\x\ge0\\\sqrt{x}+1\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne1\\x>0\end{cases}}\)

\(b,A=\frac{1}{x^2-\sqrt{x}}:\frac{\sqrt{x}+1}{x\sqrt{x}+x+\sqrt{x}}\)

\(=\frac{1}{x^2-\sqrt{x}}\cdot\frac{x\sqrt{x}+x+\sqrt{x}}{\sqrt{x}+1}\)

\(=\frac{1}{\sqrt{x}\left(\sqrt{x}^3-1\right)}\cdot\frac{\sqrt{x}\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\frac{\left(x+\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\frac{1}{x-1}\)