K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

Có thể nêu cách giải giúp mik đc ko?

30 tháng 12 2015

n=9

p=180

tick nha

28 tháng 12 2015

1b.

Bài tập Toán

1a

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)

Suy ra n^2 - m^2 =2006 <=> ( n - m )( n + m ) = 2006

Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)

Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)

Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn

=> a và b phải cùng chẵn hoặc cùng lẻ(2) Từ (1) và (2) suy ra a và b đều là số chẵn

Suy ra a = 2k , b= 2l ( với k,l là số nguyên)

Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006

Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)

Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm) 

****

Câu 1:Số tự nhiên nhỏ nhất có 6 chữ số chia hết cho 9 là Câu 2:Số nguyên tố lớn nhất có dạng 3a1 là Câu 3:Hiệu của số lớn nhất có bốn chữ số khác nhau và số chẵn nhỏ nhất có bốn chữ số khác nhau là Câu 4:Từ số 1 đến số 100 có bao nhiêu số chia hết cho 2 nhưng không chia hết cho 5?Trả lời: Số số thỏa mãn là Câu 5:Số nguyên tố nhỏ nhất có dạng aa3 là Câu 6:Số nguyên tố...
Đọc tiếp

Câu 1:
Số tự nhiên nhỏ nhất có 6 chữ số chia hết cho 9 là 

Câu 2:
Số nguyên tố lớn nhất có dạng 3a1 là 

Câu 3:
Hiệu của số lớn nhất có bốn chữ số khác nhau và số chẵn nhỏ nhất có bốn chữ số khác nhau là 

Câu 4:
Từ số 1 đến số 100 có bao nhiêu số chia hết cho 2 nhưng không chia hết cho 5?
Trả lời: Số số thỏa mãn là 

Câu 5:
Số nguyên tố nhỏ nhất có dạng aa3 là 

Câu 6:
Số nguyên tố lớn nhất có ba chữ số là

Câu 7:
Cho x;y là các số nguyên dương thỏa mãn:(x-2)(2y+3)=26 .
Khi đó 

Câu 8:
Tìm số tự nhiên n khác 1 để 3n+5 chia hết cho n.
Trả lời: 

Câu 9:
Biết x;y;z là ba số nguyên tố đôi một khác nhau. Hỏi số A=x2.y5.z có bao nhiêu ước số?
Trả lời có  ước.

Câu 10:
Tìm số tự nhiên n để n2+3 chia hết cho n+2.
Trả lời: n=

1
19 tháng 12 2015

1.100008

2.331

tạm 2 câu đã, bạn tick mình làm tiếp

11 tháng 11 2015

Bài 1: 1002

Bài 2: 25

Bài 3: n=5

Bài 4: 17

Bài 5 : 2.5.1=10 (ước)

11 tháng 11 2015

mình thử lại rồi nên bạn không phải lo đâu

li k e đi bạn

26 tháng 1 2016

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

bạn ấn vào đúng 0 sẽ ra kết quả, mình làm rồi dễ lắm bạn ạ

đùa tí bạn ấn vào dòng chữ xanh này nhé Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

30 tháng 12 2015

Nguyễn Minh Anh ở trường mình mà sao ko biết nhỉ

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do