Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}}{\sqrt{x}-1}\right):\frac{2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2}\)
\(=\frac{-\sqrt{x}}{\sqrt{x}-1}\)
Để p = -2 \(\Rightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}=-2\)
\(\frac{-\sqrt{x}}{\sqrt{x}-1}=-2\)
\(\Rightarrow-\sqrt{x}=-2\left(\sqrt{x}-1\right)\)
\(\Rightarrow-\sqrt{x}=-2\sqrt{x}+2\)
\(\Rightarrow-\sqrt{x}+2\sqrt{x}=2\)
\(\Rightarrow\sqrt{x}=2\)
\(\Rightarrow x=4\)
\(\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
Vậy GTLN của biểu thức là \(\dfrac{4}{3}\) . Dấu \("="\) xảy ra khi \(x=\dfrac{1}{4}\)
x\(x\ge0\)
\(x-\sqrt{x}+1=\sqrt{x}^2-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{x-\sqrt{x}+1}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)
\(\Rightarrow\) biểu thức đạt GTLN bằng \(\dfrac{4}{3}\) khi \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
\(\left(x+1,2\right)+\left(x+1,5\right)+...+\left(x+4,5\right)=61,18\)
\(\Leftrightarrow\left(x+x+...+x\right)+\left(1,2+1,5+...+4,5\right)=61,18\)
\(\Leftrightarrow12x+34,2=61,18\)
Số lẻ hình như sai đề
\(A=\sqrt{2}-\sqrt{x+2\sqrt{2x-4}}\) ( ĐKXĐ: \(x\ge2\))
\(\Rightarrow A\sqrt{2}=2-\sqrt{2x+4\sqrt{2x-4}}\)
\(=2-\sqrt{\left(\sqrt{2x-4}+2\right)^2}\)
\(=2-\sqrt{2x-4}-2\)
\(=-\sqrt{2x-4}\)
\(\Rightarrow A=-\sqrt{\frac{2x-4}{2}}\)
\(=-\sqrt{x-2}\)
\(A=-1\Leftrightarrow-\sqrt{x-2}=-1\)
\(\Leftrightarrow\sqrt{x-2}=1\)
\(\Leftrightarrow x=3\)( Thỏa mãn ĐKXĐ )
TK NHA!
a) a và c trái dấu => pt luôn có nghiệm kép với mọi m
b) Ta có đenta=(-2(m-4))2 - 4(m2+m+3) = 4m2 - 64 - 4m2 - 4m - 12 = -74-4m
Để pt có nghiệm kép thì đenta>0 hay -74-4m>0 => m>-19
Theo đề ta có:
\(\dfrac{x}{1,2}=\dfrac{y}{2,5}=\dfrac{z}{4,3}\) và x+ y + z = 152
A/dụng t/c của dãy tỉ số= nhau có:
\(\dfrac{x}{1,2}=\dfrac{y}{2,5}=\dfrac{z}{4,3}=\dfrac{x+y+z}{1,2+2,5+4,3}=\dfrac{152}{8}=19\)
=> \(\left\{{}\begin{matrix}x=19\cdot1,2=22,8\\y=19\cdot2,5=47,5\\z=19\cdot4,3=81,7\end{matrix}\right.\)
Vậy.......
= x-2 -2\(\sqrt{ }\)x-2 +1+4 đk: x\(\ge\)2
= (\(\sqrt{ }\)x-2 -1)2 +4
Vì (\(\sqrt{ }\)x-2 -1)2\(\ge\)0=>(\(\sqrt{ }\)x-2 -1)2+4\(\ge\)4
Vậy Min A= 4 ,dấu "=" xảy ra <=> (\(\sqrt{ }\)x-2 -1)2 =0 đk :x\(\ge\)2
<=> x=3 TM