K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{1}{x-\sqrt{x}+1}=\dfrac{1}{\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}}=\dfrac{1}{\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

Vậy GTLN của biểu thức là \(\dfrac{4}{3}\) . Dấu \("="\) xảy ra khi \(x=\dfrac{1}{4}\)

NV
4 tháng 1 2019

x\(x\ge0\)

\(x-\sqrt{x}+1=\sqrt{x}^2-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\dfrac{1}{x-\sqrt{x}+1}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

\(\Rightarrow\) biểu thức đạt GTLN bằng \(\dfrac{4}{3}\) khi \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2=0\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)

29 tháng 12 2017

a. ĐKXĐ : x>1.

b. \(A=\left(\dfrac{4}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right):\dfrac{1}{\sqrt{x}-1}=\left[\dfrac{4}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}-1}\right].\left(\sqrt{x}-1\right)=\dfrac{4+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-1\right)=\dfrac{4+x}{\sqrt{x}}\)

c. Thay \(x=4-2\sqrt{3}\) vào A, ta có:

\(A=\dfrac{4+4-2\sqrt{3}}{\sqrt{4-2\sqrt{3}}}=\dfrac{8-2\sqrt{3}}{\sqrt{\left(\sqrt{3}-1\right)^2}}=\dfrac{8-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{\left(8-2\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}=\dfrac{8\sqrt{3}+8-6-2\sqrt{3}}{2}=\dfrac{2+6\sqrt{3}}{2}=\dfrac{2\left(1+3\sqrt{3}\right)}{2}=1+3\sqrt{3}\)

Vậy giá trị của A tại \(x=4-2\sqrt{3}\)\(1+3\sqrt{3}\).

NV
13 tháng 1 2019

ĐKXĐ: \(x\ge0;x\ne1\)

Sửa lại đề chỗ \(\dfrac{\sqrt{x-1}}{\sqrt{x}+2}\) thành \(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{3\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

\(P=\dfrac{3\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{3\sqrt{x}-\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}\)

\(P=\dfrac{2\sqrt{x}+4-\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{\sqrt{x}+5}{\sqrt{x}+2}=1+\dfrac{3}{\sqrt{x}+2}\)

Để P lớn nhất \(\Rightarrow\dfrac{3}{\sqrt{x}+2}\) lớn nhất

\(\sqrt{x}+2\ge2\Rightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)

\(\Rightarrow P_{max}=1+\dfrac{3}{2}=\dfrac{5}{2}\) khi \(\sqrt{x}+2=2\Leftrightarrow x=0\)

30 tháng 10 2019

a)ĐKXĐ:x>0

P=\(\left(\frac{3}{x-1}-\frac{1}{\sqrt{x}+1}\right):\frac{1}{\sqrt{x}+1}\left(vớix>0\right)\)

=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]:\frac{1}{\sqrt{x}+1}\)

=\(\left[\frac{3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\frac{1}{\sqrt{x}+1}\)

= \(\left[\frac{3-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\frac{1}{\sqrt{x}+1}\)

=\(\frac{4-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{1}\)

=\(\frac{4-\sqrt{x}}{\sqrt{x}-1}\)

b)Để P=\(\frac{5}{4}\left(vớix>0\right)\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}=\frac{5}{4}\)

\(\Leftrightarrow\frac{4-\sqrt{x}}{\sqrt{x}-1}-\frac{5}{4}=0\)

\(\Leftrightarrow\frac{4\left(4-\sqrt{x}\right)}{4\left(\sqrt{x}-1\right)}-\frac{5\left(\sqrt{x}-1\right)}{4\left(\sqrt{x}-1\right)}=0\)

\(\Rightarrow16-4\sqrt{x}-5\sqrt{x}+5=0\)

\(\Leftrightarrow21-9\sqrt{x}=0\)

\(\Leftrightarrow-9\sqrt{x}=-21\)

\(\Leftrightarrow\sqrt{x}=\frac{7}{3}\)

\(\Leftrightarrow x=\frac{21}{9}\)

Vậy:Để P=\(\frac{5}{4}\)thì x=\(\frac{21}{9}\)

c)Còn phần c thì mik chịuhahahahahahahahahaha

22 tháng 10 2021

...

\(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)

 

b: \(P=\dfrac{\sqrt{x}+\sqrt{x}+2}{x-4}\cdot\dfrac{\sqrt{x}-2}{2}=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)

a: Khi x=64 thì \(P=\dfrac{8+1}{8+2}=\dfrac{9}{10}\)

 

21 tháng 11 2018

Ta co :\(\dfrac{1}{f\left(x\right)}=\) \(x^4-x^2+1=x^4-2.\dfrac{1}{2}x^2+\dfrac{1}{4}+\dfrac{3}{4}\)

= \(\left(x^2-\dfrac{1}{4}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

=> f(x) ≤ \(\dfrac{4}{3}\)

Vay max f(x) =\(\dfrac{4}{3}\)

1 tháng 11 2017

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

15 tháng 6 2017

Lần sau ghi dấu ra xíu nhé :v

a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)

Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)

b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)

x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)

mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))

15 tháng 6 2017

dung ko the ban, sao ngan the ?