Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2.x}-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{45.46}=-2\)
\(\frac{1}{2.x}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{45.46}\right)=-2\)
\(\frac{1}{2.x}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{45}-\frac{1}{46}\right)=-2\)
\(\frac{1}{2.x}-\left(1-\frac{1}{46}\right)\)
\(\frac{1}{2.x}-\frac{45}{46}=-2\)
\(\frac{1}{2.x}=-2+\frac{45}{46}\)
\(\frac{1}{2.x}=\frac{-47}{46}\)
\(2x=\frac{46}{-47}\)
\(x=\frac{46}{-47}:2=\frac{-23}{47}\)
\(\frac{1}{2.x}-\frac{1}{1.2}-\frac{1}{2.3}-......-\frac{1}{45.46}=-2\)2
\(\frac{1}{2.x}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{45.46}\right)=-2\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{45.46}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{45}-\frac{1}{46}\)
\(A=1-\frac{1}{46}=\frac{45}{46}\)
Ta có: \(\frac{1}{2.x}-\frac{45}{46}=-2\)
\(\frac{1}{2.x}=\frac{-47}{46}\)
\(\frac{-47}{-94.x}=\frac{-47}{46}\)
\(\Rightarrow x=\frac{-23}{47}\)
\(75\%-1\frac{1}{2}+0,5:\frac{5}{12}-\frac{-1^2}{2}\)
\(=\frac{75}{100}-\frac{3}{2}+\frac{5}{10}.\frac{12}{5}-\frac{1}{2}\)
\(=\frac{3}{4}-\frac{3}{2}+\frac{6}{5}-\frac{1}{2}\)
\(=\frac{15}{20}-\frac{30}{20}+\frac{24}{20}-\frac{10}{20}\)
\(=\frac{15-30+24-10}{20}\)
\(=\frac{-1}{20}\).
Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3
=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3
=>1-1/x+1=2/3
=>1/x+1=1/3
=>3=x+1
=>x=2
Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)
=>\(1-\frac{1}{x+1}=\frac{2}{3}\)
=>\(\frac{1}{x+1}=1-\frac{2}{3}\)
=>\(\frac{1}{x+1}=\frac{1}{3}\)
=>\(x+1=3\)
=>\(x=2\)
12(x - 1) = 48
=> x - 1 = 48 : 12
=> x - 1 = 4
=> x = 4 + 1
=> x = 5
Vậy x = 5
\(\frac{1}{2}+x\div\frac{1}{3}=3\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}+x\div\frac{1}{3}=\frac{7}{2}\)
\(\Rightarrow x\div\frac{1}{3}=\frac{7}{2}-\frac{1}{2}\)
\(\Rightarrow x\div\frac{1}{3}=3\)
\(\Rightarrow x=3.\frac{1}{3}\)
\(\Rightarrow x=1\)
Vậy x = 1
(x + 1) + (x + 2) + ... + (x + 10) = 105
=> (x + x + ... + x) + (1 + 2 + ... + 10) = 105
có 10 số x có 10 số hạng
=> 10x + (1 + 10) . 10 : 2 = 105
=> 10x + 11 . 10 : 2 = 105
=> 10x + 110 : 2 = 105
=> 10x + 55 = 105
=> 10x = 105 - 55
=> 10x = 50
=> x = 50 : 10
=> x = 5
Vậy x = 5
12 . ( x - 1 ) = 48
x - 1 = 48 - 12
x - 1 = 36
x = 36 + 1
x = 37
~ Hok tốt ~
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-........-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=1-\frac{1}{10}\)
\(=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
\(\Leftrightarrow\frac{9}{10}.100-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)
\(\Leftrightarrow90-\left[\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}\right]=89\)
\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right):\frac{1}{2}=90-89=1\)
\(\Leftrightarrow\frac{5}{2}:\left(x+\frac{206}{100}\right)=1.\frac{1}{2}=\frac{1}{2}\)
\(\Leftrightarrow x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}\)
\(\Leftrightarrow x+\frac{103}{50}=\frac{5}{2}.2\)
\(\Leftrightarrow x+\frac{103}{50}=5\)
\(\Leftrightarrow x=5-\frac{103}{50}\)
\(\Leftrightarrow x=\frac{250}{50}-\frac{103}{50}\)
\(\Leftrightarrow x=\frac{147}{50}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(x-1\right)x}=2\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{x-1}-\frac{1}{x}=2\)
suy ra \(1-\frac{1}{x}=2\)
hay \(\frac{x-1}{x}=2\) .suy ra x-1=2x .tính ra ta có x=-1
(1 - \(\dfrac{1}{2}\)).(1 - \(\dfrac{1}{3}\))....(1- \(\dfrac{1}{2022}\)).\(x\) = 1 - \(\dfrac{1}{1.2}\) - \(\dfrac{1}{2.3}\)-...-\(\dfrac{1}{2002.2003}\)
(\(\dfrac{2-1}{2}\)).(\(\dfrac{3-1}{3}\))...(\(\dfrac{2022-1}{2022}\)).\(x\) = 1 - (\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2002.2003}\))
\(\dfrac{1}{2}\).\(\dfrac{2}{3}\)...\(\dfrac{2021}{2022}\).\(x\) = 1 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+ ... + \(\dfrac{1}{2002}\) - \(\dfrac{1}{2003}\))
\(\dfrac{1}{2022}\).\(x\) = 1 - (\(\dfrac{1}{1}\) - \(\dfrac{1}{2003}\))
\(\dfrac{1}{2022}\).\(x\) = \(\dfrac{1}{2003}\)
\(x\) = \(\dfrac{1}{2003}\) : \(\dfrac{1}{2022}\)
\(x\) = \(\dfrac{2022}{2003}\)
a) Đặt A = 1.2 + 2.3 + ........ + (n-1)n
3A = 1.2.3 + 2.3.(4-1) + .... + (n-1)n[(n+1)-(n-2)]
3A = 1.2.3 + 2.3.4 - 1.2.3 + .... + (n-1)n(n+1) - (n-2)(n-1)n
3A = (1.2.3 - 1.2..3) + ... + (n-1)n(n+1)
A = \(\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
b) Đặt B = 12 + 22 + ..... + n2
B = 1(2 - 1) + 2(3 - 1) + ..... + n[(n + 1) - 1]
B = 1.2 + 2.3 + .......... + n(n + 1) - (1+2+3+....+n)
B = A - \(\frac{n\left(n+1\right)}{2}\)