K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

\(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{49.51}\right)\)+\(\dfrac{2}{51}\)

=\(\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.....\dfrac{2500}{49.51}\)+\(\dfrac{2}{51}\)

=\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{50^2}{49.51}\)+\(\dfrac{2}{51}\)

=\(\dfrac{\left(2.3.4.....50\right)\left(2.3.4.....50\right)}{\left(1.2.3.....49\right)\left(3.4.....51\right)}\)+\(\dfrac{2}{51}\)

=\(\dfrac{\left(2.3.4.....49\right).50.2.\left(3.4.5.....50\right)}{1.\left(2.3.4.....49\right)\left(3.4.5.....50\right).51}\)+\(\dfrac{2}{51}\)

=\(\dfrac{50.2}{1.51}\)+\(\dfrac{2}{51}\)=\(\dfrac{100}{51}\)+\(\dfrac{2}{51}\)=\(\dfrac{102}{51}\)=2

AH
Akai Haruma
Giáo viên
15 tháng 8 2023

Lời giải:
Xét thừa số tổng quát $1+\frac{1}{n(n+2)}=\frac{n(n+2)+1}{n(n+2)}=\frac{(n+1)^2}{n(n+2)}$

Khi đó:

$1+\frac{1}{1.3}=\frac{2^2}{1.3}$

$1+\frac{1}{2.4}=\frac{3^2}{2.4}$

.........

$1+\frac{1}{99.101}=\frac{100^2}{99.101}$

Khi đó:

$A=\frac{2^2.3^2.4^2......100^2}{(1.3).(2.4).(3.5)....(99.101)}$

$=\frac{(2.3.4...100)(2.3.4...100)}{(1.2.3...99)(3.4.5...101)}$

$=\frac{2.3.4...100}{1.2.3..99}.\frac{2.3.4...100}{3.4.5..101}$
$=100.\frac{2}{101}=\frac{200}{101}$

15 tháng 8 2023

giúp em với

 

19 tháng 8 2023

a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)

\(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(1-\dfrac{1}{101}\)

=\(\dfrac{100}{101}\) 

 

 

19 tháng 8 2023

\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+...+\dfrac{5}{99.101}\)

=\(\dfrac{5}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99+101}\right)\)

=\(\dfrac{5}{2}.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\) 

=\(\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)\)

\(\dfrac{5}{2}-\dfrac{100}{101}\)

\(\dfrac{305}{202}\)

9 tháng 8 2016

A= (1+1/1 x 3)x(1+1/2x4)x(1+1/3x5)x............x(1+1/2011x2013)

\(=\left(\frac{3}{3}+\frac{1}{3}\right)\left(\frac{8}{8}+\frac{1}{8}\right)....\left(\frac{4048143}{4048143}+\frac{1}{4048143}\right)\)

\(=\frac{4}{3}\cdot\frac{9}{8}\cdot...\cdot\frac{4048144}{4048143}\)

\(=\frac{4\cdot9\cdot....\cdot4048144}{3\cdot8\cdot....\cdot4048143}\)

\(=\frac{2\cdot2\cdot3\cdot3\cdot....\cdot2012\cdot2012}{1\cdot3\cdot2\cdot4\cdot....\cdot2011\cdot2013}\)

\(=\frac{2\cdot2012}{2013}=\frac{4024}{2013}\)